Home Some Applications of Differential Subordination of p-Valent Functions
Article
Licensed
Unlicensed Requires Authentication

Some Applications of Differential Subordination of p-Valent Functions

  • E. E. Ali EMAIL logo
Published/Copyright: July 29, 2015
Become an author with De Gruyter Brill

Abstract

The object of the present paper is to investigate some inclusion relationships and a number of other properties of several subclasses of multivalent analytic functions, which are defined here by using the hypergeometric function. Relevant connections of the results presented here with those obtained in earlier works are pointed out.

References

[1] Al-KHARSANI, H. A.-Al-AREEFI, N. M.: On classes of multivalent functions involving linear operator and multiplier transformations, Hacettepe J. Math. Stat. 37 (2008), 115-127.Search in Google Scholar

[2] BULBOACA, T.: Differential Subordinations and Superordinations. Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.Search in Google Scholar

[3] CARLSON, B. C.-SHAFFER, D. B.: Starlike and prestarlike hypergeometric function, SIAM J. Math. Anal. 15 (1984), 737-745.10.1137/0515057Search in Google Scholar

[4] CHO, N. E.-KWON, O. H.-SRIVASTAVA, H. M.: Inclusion and argument properties for certain subclass of multivalent functions associated with a family of linear operator, J. Math. Anal. Appl. 292 (2004), 470-483.10.1016/j.jmaa.2003.12.026Search in Google Scholar

[5] CHOI, J. H.-SAIGO, M.-SRIVASTAVA, H. M.: Some inclusion properties of a certain family of integral operators, J. Math. Anal. Appl. 276 (2002), 432-445.10.1016/S0022-247X(02)00500-0Search in Google Scholar

[6] HALLENBECK, D. J.-RUSCHEWEYH, St.: Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191-195. 10.1090/S0002-9939-1975-0374403-3Search in Google Scholar

[7] KANAS, S.: Techniques of the differential subordination for domains bounded by conic sections, Int. J. Math. Math. Sci. 38 (2003), 2389-2400.10.1155/S0161171203302212Search in Google Scholar

[8] KANAS, S.-KOWALCZYK, J.: A note on Briot-Bouquet-Bernoulli differential subordination, Comment. Math. Univ. Carolin. 46 (2005), 1-10.Search in Google Scholar

[9] KANAS, S.-LECKO, A.-STANKIEWICZ, J.: Differential subordination and geometric means, Complex Variables Theory Appl. 18 (1995), 201-209.Search in Google Scholar

[10] VINOD KUMAR-SHUKLA, S. L.: Multivalent functions defined by Ruscheweyh derivatives. I; II, Indian J. Pure Appl. Math. 15 (1984), 1216-1227; 1228-1238.Search in Google Scholar

[11] KWON, O. S.-CHO, N. E.: Inclusion properties for certain subclasses of analytic functions associated with the Dziok-Srivastava operator, J. Ineq. Appl. Vol. (2007), Art. ID51079, 1-10.Search in Google Scholar

[12] LASHIN, A. Y.: Some convolution properties of analytic functions, Appl. Math. Lett. 18 (2005), 135-138.10.1016/j.aml.2004.09.003Search in Google Scholar

[13] LIU, M.-S.: On certain sufficient condition for starlike functions, Soochow. J. Math. 29 (2003), 407-412.Search in Google Scholar

[14] LIU, J.-L.-NOOR, K. I.: Some properties of Noor integral operator, J. Natur. Geom. 21 (2002), 81-90.Search in Google Scholar

[15] MILLER, S. S.-MOCANU, P. T.: Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.10.1307/mmj/1029002507Search in Google Scholar

[16] MILLER, S. S. -MOCANU, P. T.: Univalent solutions of Briot-Bouquet differential equations, J. Differential Equarions 56 (1985), 297-309.10.1016/0022-0396(85)90082-8Search in Google Scholar

[17] MILLER, S. S.-MOCANU, P. T.: Differential Subordinations: Theory and Applications. Ser. on Monographs and Texbooks in Pure and Appl. Math., Vol. 225, Marcel Dekker, New York-Basel, 2000.10.1201/9781482289817Search in Google Scholar

[18] OBRADOVIC, M.-OWA, S.: On certain properties for some classes of starlike functions, J. Math. Anal. Appl. 145 (1990), 357-364.10.1016/0022-247X(90)90405-5Search in Google Scholar

[19] PASHKOULEVA, D. Z.: The starlikeness and spiral-convexity of certain subclasses of analytic functions. In: Current Topics in Analytic Function Theory (H. M. Srivastava, S. Owa, eds.), World Scientific Publishing, Hong Kong, 1992, pp. 266-273.Search in Google Scholar

[20] PATEL, J.-MISHRA, A. K.-SRIVASTAVA, H. M.: Classes of multivalent analytic functions involving the Dziok-Srivastava operator, Comput. Math. Appl. 54 (2007), 599-616.10.1016/j.camwa.2006.08.041Search in Google Scholar

[21] PATEL, J.-CHO, N. E.-SRIVASTAVA, H. M.: Certain subclasses of multivalent functions associated with a family of linear operator, Math. Comput. Modelling 43 (2006), 320-338.10.1016/j.mcm.2005.06.014Search in Google Scholar

[22] RUSCHEWEYH, S.-SHEIL-SMALL, T.: Hadamard products of schlicht functions and the poloya-schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135.10.1007/BF02566116Search in Google Scholar

[23] SAITOH, H.: A linear operator and its applications of first order differential subordinations, Math. Japon. 44 (1996), 31-38.Search in Google Scholar

[24] SRIVASTAVA, H. M.-KARLSSON, P. W.: Multiple Gausian Hypergeometric Series, Halsted Press, Ellis Horwood Limited, Chichester/John Wiley and Sons, New York- Chichester-Brisbane-London, 1985.Search in Google Scholar

[25] STANKIEWICZ, J.-STANKIEWICZ, Z.: Some applications of the Hadamard convolution in the theory of functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A 40 (1986), 251-265. 531Search in Google Scholar

[26] WHITTAKER, E. T.-WASTSON, G. N.: A Course on Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcenclental Functions (4th ed. Reprinted), Cambridge Univ. Press, Camridge, 1927.Search in Google Scholar

Received: 2012-1-7
Accepted: 2012-10-9
Published Online: 2015-7-29
Published in Print: 2015-6-1

© Mathematical Institute Slovak Academy of Sciences

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0037/html
Scroll to top button