Home n-Weak Module Amenability of Triangular Banach Algebras
Article
Licensed
Unlicensed Requires Authentication

n-Weak Module Amenability of Triangular Banach Algebras

  • Abasalt Bodaghi EMAIL logo and Ali Jabbari
Published/Copyright: July 29, 2015
Become an author with De Gruyter Brill

Abstract

Let A, B be Banach A-modules with compatible actions and M be a left Banach A- A-module and a right Banach B- A-module. In the current paper, we study module amenability, n-weak module amenability and module Arens regularity of the triangular Banach algebra -. We employ these results to prove that for an inverse semigroup S with subsemigroup E of idempotents, the triangular Banach algebra is permanently weakly module amenable (as an . As an example, we show that T0 is T0-module Arens regular if and only if the maximal group homomorphic image GS of S is finite.

References

[1] AMINI, M.: Module amenability for semigroup algebras, Semigroup Forum 69 (2004), 243-254.10.1007/s00233-004-0107-3Search in Google Scholar

[2] AMINI, M.-BODAGHI, A.-EBRAHIMI BAGHA, D.: Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum 80 (2010), 302-312.10.1007/s00233-010-9211-8Search in Google Scholar

[3] AMINI, M.-BODAGHI, A.-ETTEFAGH, M.-HAGHNEJAD AZAR, K.: Arens regularity and module Arens regularity of module actions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 74 (2012), No. 2, 75-86.Search in Google Scholar

[4] AMINI, M.-EBRAHIMI BAGHA, D.: Weak module amenability of semigroup algebras, Semigroup Forum 71 (2005), 18-26.10.1007/s00233-004-0166-5Search in Google Scholar

[5] BODAGHI, A.: Semigroup algebras and their weak module amenability, J. Appl. Funct. Anal. 7 (2012), 332-338.Search in Google Scholar

[6] BODAGHI, A.-AMINI, M.-BABAEE, R.: Module derivations into iterated duals of Banach algebras, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 12 (2011), No. 4, 227-284.Search in Google Scholar

[7] BOWLING, S.-DUNCAN, J.: Order cohomology of Banach semigroup algebras, Semigroup Forum 56 (1998), 130-145.10.1007/s00233-002-7009-zSearch in Google Scholar

[8] CHOI, Y.-GHAHRAMANI, F.-ZHANG, Y.: Approximate and pseudo-amenability of various classes of Banach algebras, J. Funct. Anal. 256 (2009), 3158-3191.10.1016/j.jfa.2009.02.012Search in Google Scholar

[9] DALES, H. G.: Banach Algebras and Automatic Continuity. London Math. Soc. Monogr. Ser. 24, Clarendon Press, Oxford, 2000.Search in Google Scholar

[10] DALES, H. G.-GHAHRAMANI, F.-GRØNBÆK, N.: Derivatios into iterated duals of Banach algebras, Studia Math. 128 (1998), 19-54.Search in Google Scholar

[11] DUNCAN, J.-NAMIOKA, I.: Amenability of inverse semigroups and their semigroup algebras, Proc. Roy. Soc. Edinburgh Sect. A 80 (1988), 309-321.10.1017/S0308210500010313Search in Google Scholar

[12] FORREST, B. E.-MARCOUX, L. W.: Derivations of triangular Banach algebras, Indiana Univ. Math. J. 45 (1996), 441-462.10.1512/iumj.1996.45.1147Search in Google Scholar

[13] FORREST, B. E.-MARCOUX, L. W.: Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc. 354 (2001), 1435-1452.10.1090/S0002-9947-01-02957-9Search in Google Scholar

[14] HOWIE, J. M.: Fundamentals of Semigroup Theory. London Math. Soc. Monogr. Ser., Clarendon Press, Oxford, 1995.Search in Google Scholar

[15] JOHNSON, B. E.: Cohomology in Banach Algebras. Mem. Amer. Math. Soc. 127, Amer. Math. Soc., Providence, RI, 1972.Search in Google Scholar

[16] MEDGHALCHI, A. R.-SATTARI,M. H.-YAZDANPANAH, T.: Amenability and weak amenability of triangular Banach algebras, Bull. Iranian Math. Soc. 31 (2005), No. 2, 57-69.Search in Google Scholar

[17] MUNN, W. D.: A class of irreducible matrix representations of an arbitrary inverse semigroup, Proc. Glasgow Math. Assoc. 5 (1961), 41-48.10.1017/S2040618500034286Search in Google Scholar

[18] POURABBAS, A.-NASRABADI, E.: Weak module amenability of triangular Banach algebras, Math. Slovaca 61 (2011), 949-958.10.2478/s12175-011-0061-ySearch in Google Scholar

[19] POURMAHMOOD-AGHABABA, H.: (Super) Module amenability, module topological center and semigroup algebras, Semigroup Forum 81 (2010), 344-356.10.1007/s00233-010-9231-4Search in Google Scholar

[20] POURMAHMOOD-AGHABABA, H.: A note on two equivalence relations on inverse semigroups, Semigroup Forum 84 (2012), 200-202.10.1007/s00233-011-9365-zSearch in Google Scholar

[21] RIEFFEL, M. A.: Induced Banach representations of Banach algebras and locally compact groups, J. Funct. Anal. 1 (1967), 443-491. 10.1016/0022-1236(67)90012-2Search in Google Scholar

[22] REZAVAND, R.-AMINI, M.-SATTARI, M. H.-EBRAHIMI BAGHA, D.: Module Arense regularity for semigroup algebras, Semigroup Forum 81 (2010), 340-356.Search in Google Scholar

Received: 2012-3-13
Accepted: 2012-10-23
Published Online: 2015-7-29
Published in Print: 2015-6-1

© Mathematical Institute Slovak Academy of Sciences

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0045/html
Scroll to top button