Home Mathematics Fuzzy Pseudo Subalgebras and Ideals of Pseudo D-Algebras
Article
Licensed
Unlicensed Requires Authentication

Fuzzy Pseudo Subalgebras and Ideals of Pseudo D-Algebras

  • Young Bae Jun and Sun Shin Ahn EMAIL logo
Published/Copyright: July 29, 2015
Become an author with De Gruyter Brill

Abstract

The fuzzification of pseudo subalgebras/ideals in d-algebras and pseudo BCK-ideals is discussed. Several properties are investigated. Relations between fuzzy pseudo BCK-ideals and fuzzy pseudo d-ideals are established. Conditions for a fuzzy set to be a fuzzy pseudo BCK-ideal are considered. Using the notion of fuzzy points, a general form of fuzzy pseudo d-subalgebras is introduced, and several properties including their characterizations are investigated.

References

[1] CIGNOLI, R. L. O.-D’OTTAVIANO, I. M. L.-MUNDICI, D.: Algebraic Foundations of Many-Valued Reasoning, Dordrecht, Kluwer, 2000.10.1007/978-94-015-9480-6Search in Google Scholar

[2] DVUREˇCENSKIJ, A.: Pseudo MV -algebras are intervals in l-groups, J. Aust. Math. Soc. Ser. A 72 (2002), 427-445.10.1017/S1446788700036806Search in Google Scholar

[3] DVUREˇCENSKIJ, A.-VETTERLEIN, T.: Pseudoeffect algebras I: Basic properties, Internat. J. Theoret. Phys. 40 (2001), 685-701.10.1023/A:1004192715509Search in Google Scholar

[4] FONT, J. M.-RODR´IGEZ, A. J.-TORRENS, A.: Wajsberg algebras, Stochastica 8 (1984), 5-31.Search in Google Scholar

[5] FOULIS, D. J.-BENNET, M. K.: Effect algebras and unsharp quantum logics, Internat. J. Theoret. Phys. 24 (1994), 1325-1346.Search in Google Scholar

[6] GEORGESCU, G.-IORGULESCU, A.: Pseudo MV -algebras, Mult.-Valued Log. 6 (2001), 95-135.Search in Google Scholar

[7] GEORGESCU, G.-IORGULESCU, A.: Pseudo BCK-algebras: an extension of BCK-algebras. In: Proc. DMTCS’01: Combinatorics, Computability and Logics, Springer, London, 2001, pp. 97-114.Search in Google Scholar

[8] IS´EKI, K.: On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.Search in Google Scholar

[9] IS´EKI, K.-TANAKA, S.: An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.Search in Google Scholar

[10] JUN, Y. B.: Characterizations of pseudo BCK-algebras, Sci. Math. Jpn. 7 (2002), 225-230.Search in Google Scholar

[11] JUN, Y. B.: A note on fuzzy ideals in BCK-algebras, Math. Japonica 42 (1995), 333-335.Search in Google Scholar

[12] JUN, Y. B.: Generalizations of (∈, ∈∨q)-fuzzy subalgebras in BCK/BCI-algebras, Comput. Math. Appl. 58 (2009), 1383-1390.10.1016/j.camwa.2009.07.043Search in Google Scholar

[13] JUN, Y. B.-KANG, M. S.: Fuzzifications of generalized Tarski filters in Tarski algebras, Comput. Math. Appl. 61 (2011), 1-7.10.1016/j.camwa.2010.10.024Search in Google Scholar

[14] JUN, Y. B.-KANG, M. S.: Fuzzy positive implicative ideals of BCK-algebras based on the theory of falling shadows, Comput. Math. Appl. 61 (2011), 62-67.10.1016/j.camwa.2010.10.029Search in Google Scholar

[15] JUN, Y. B.-KANG,M. S.-KIM, H. S.:, Fuzzy structures of hyper-MV-deductive systems in hyper-MV-algebras, Comput. Math. Appl. 59 (2010), 2982-2989.10.1016/j.camwa.2010.02.016Search in Google Scholar

[16] JUN, Y. B.-KIM, H. S.-NEGGERS, J.: Pseudo d-algebras, Inform. Sci. 179 (2009), 1751-1759.10.1016/j.ins.2009.01.021Search in Google Scholar

[17] JUN, Y. B.-LEE, K. J.-PARK, C. H.: Fuzzy soft set theory applied to BCK/BCI-algebras, Comput. Math. Appl. 59 (2010), 3180-3192.10.1016/j.camwa.2010.03.004Search in Google Scholar

[18] JUN, Y. B.-NEGGERS, J.-KIM, H. S.: On fuzzy d-ideals of d-algebras, J. Fuzzy Math. 8 (2000), 123-130.Search in Google Scholar

[19] MENG, J.: Implicative commutative semigroups are equivalent to a class of BCK-algebras, Semigroup Forum 50 (1995), 89-96.10.1007/BF02573506Search in Google Scholar

[20] MUNDICI, D.: MV -algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japonica 31 (1986), 889-894.Search in Google Scholar

[21] NEGGERS, J.-DVUREˇCENSKIJ, A.-KIM, H. S.: On d-fuzzy functions in d-algebras, Found. Phys. 30 (2000), 889-894.10.1023/A:1026466720971Search in Google Scholar

[22] NEGGERS, J.-JUN, Y. B.-KIM, H. S.: On d-ideals in d-algebras, Math. Slovaca 49 (1999), 243-251.Search in Google Scholar

[23] NEGGERS, J.-KIM, H. S.: On d-algebras, Math. Slovaca 49 (1999), 19-26.Search in Google Scholar

[24] PU, P. M.-LIU, Y. M.: Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599. 10.1016/0022-247X(80)90048-7Search in Google Scholar

[25] SHABIR, M.-JUN, Y. B.-NAWAZ, Y.: Semigroups characterized by (∈, ∈ ∨ qk)-fuzzy ideals, Comput. Math. Appl. 60 (2010), 1473-1493.10.1016/j.camwa.2010.06.030Search in Google Scholar

Received: 2012-4-16
Accepted: 2012-10-30
Published Online: 2015-7-29
Published in Print: 2015-6-1

© Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0032/html
Scroll to top button