Startseite On the Ψ-Strong Stability of Nonlinear Lyapunov Matrix Differential Equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the Ψ-Strong Stability of Nonlinear Lyapunov Matrix Differential Equations

  • Aurel Diamandescu EMAIL logo
Veröffentlicht/Copyright: 29. Juli 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The paper provides (necessary and) sufficient conditions for Ψ-strong stability of the trivial solution of a linear Lyapunov matrix differential equations. Further, sufficient condition are obtained for Ψ-strong stability of the trivial solution of a nonlinear Lyapunov matrix differential equation.

References

[1] ASCOLI, G.: Osservazioni sopre alcune questioni di stabilita, I, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 9 (1950), 129-134.Suche in Google Scholar

[2] BELLMAN, R.: Introduction to Matrix Analysis, McGraw-Hill Book Company, Inc., New York, 1960.Suche in Google Scholar

[3] COPPEL, W. A.: Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Company, Boston, 1965.Suche in Google Scholar

[4] DIAMANDESCU, A.: On the strong stability of a nonlinear Volterra integro-differential system, Acta Math. Univ. Comenian. (N.S.) LXXV (2006), 153-162.Suche in Google Scholar

[5] DIAMANDESCU, A.: Ψ-bounded solutions for a Lyapunov matrix differential equation, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), No. 17, 1-11.Suche in Google Scholar

[6] DIAMANDESCU, A.: On Ψ-stability of a nonlinear Lyapunov matrix differential equations, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), No. 54, 1-18.Suche in Google Scholar

[7] DIAMANDESCU, A.: On Ψ-asymptotic stability of nonlinear Lyapunov matrix differential equations, An. Univ. Vest Timi,s. Ser. Mat.-Inform. L, (2012), 3-25.10.2478/v10324-012-0001-8Suche in Google Scholar

[8] DIAMANDESCU, A.: On the Ψ-instability of nonlinear Lyapunov matrix differential equations, An. Univ. Vest Timi,s. Ser. Mat.-Inform. XLIX (2011), 21-37.Suche in Google Scholar

[9] MURTY,M. S. N.-SURESH KUMAR,G.: On Ψ-boundedness and Ψ-stability of matrix Lyapunov systems, J. Appl. Math. Comput. 2008 (2008), No. 26, 67-84.Suche in Google Scholar

[10] MURTY, M. S. N.-SURESH KUMAR,G.: On dichotomy and conditioning for two-point boundary value problems associated with first order matrix Lyapunov systems, J. Korean Math. Soc. 45 (2008), 1361-1378.10.4134/JKMS.2008.45.5.1361Suche in Google Scholar

[11] MURTY, M. S. N.-KUMAR, G. S.-LAKSHMI, P. N.-ANJANEYULU, D.: On Ψ-instability of non-linear matrix Lyapunov systems, Demonstratio Math. XLII (2009), 731-743.10.1515/dema-2013-0211Suche in Google Scholar

[12] MURTY, M. S. N.-SURESH KUMAR, G.-ANJANEYULU, D.: On Ψ-strong stability of non-linear Volterra integro-diferential systems, Mathematical Sciences Quarterly 3 (2009), 25-40.Suche in Google Scholar

[13] WINTNER, A.: Asymptotic integrations of the adiabatic oscillator, Amer. J. Math. 69 (1947), 251-272.10.2307/2371850Suche in Google Scholar

Received: 2012-4-30
Accepted: 2012-10-2
Published Online: 2015-7-29
Published in Print: 2015-6-1

© Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0040/html
Button zum nach oben scrollen