Home Global Dynamics of a Delayed n + m-Species Competition Predator-Prey System on Time Scales
Article
Licensed
Unlicensed Requires Authentication

Global Dynamics of a Delayed n + m-Species Competition Predator-Prey System on Time Scales

  • Dongshu Wang EMAIL logo
Published/Copyright: July 29, 2015
Become an author with De Gruyter Brill

Abstract

In this paper, we consider a delayed n + m-species competition predator-prey system on time scales with Holling III functional response and multiple exploited (or harvesting) terms. By using the continuation theorem based on Gaines and Mawhin’s coincidence degree theory, easily verifiable criteria are established for global existence of multiple positive periodic solutions for the above system.

References

[1] AGARWAL, R. P.: Difference Equations and Inequalities: Theory, Methods and Applications. Monogr. Textb. Pure Appl. Math., Marcel Dekker, New York, 2000.10.1201/9781420027020Search in Google Scholar

[2] AGARWAL, R. P.-BOHNER, M.: Basic calculus on time scales and some of its applications, Results Math. 35 (1999), 3-22.10.1007/BF03322019Search in Google Scholar

[3] BOHNER, M.-ELOE, P. W.: Higher order dynamic equations on measure chains; Wronskians, disconjugacy and interpolating families of functions, J. Math. Anal. Appl. 246 (2000), 639-656.10.1006/jmaa.2000.6846Search in Google Scholar

[4] BOHNER, M.-FAN, M.-ZHANG, J. M.: Existence of periodic solutions in predatorprey and competition dynamic systems, Nonlinear Anal. Real World Appl. 7 (2006), 1193-1204.10.1016/j.nonrwa.2005.11.002Search in Google Scholar

[5] BOHNER, M.-FAN, M.-ZHANG, J. M.: Periodicity of scalar dynamic equations and applications to population models, J. Math. Anal. Appl. 330 (2007), 1-9.10.1016/j.jmaa.2006.04.084Search in Google Scholar

[6] BOHNER, M.-PETERSON, A. C.: Dynamic Equations on Time Scales: an Introduction with Application, Birkhauser, Boston, 2001.10.1007/978-1-4612-0201-1Search in Google Scholar

[7] BOHNER, M.-PETERSON, A. C.: Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.10.1007/978-0-8176-8230-9Search in Google Scholar

[8] CAI, Z. W.-HUANG, L. H.-CHEN, H. B.: Positive periodic solution for a multispecies competition-predator system with Holling III functional response and time delays, Appl. Math. Comput. 217 (2011), 4866-4878.10.1016/j.amc.2010.10.014Search in Google Scholar

[9] CHEN, C.-CHEN, F. D.: Conditions for global attractivity of multispecies ecological competition-predator system with Holling III type functional response, J. Biomath. 19 (2004), 136-140.Search in Google Scholar

[10] CHEN, X. X.: Periodicity in a nonlinear predator-prey system on time scales with statedependent delays, Appl. Math. Comput. 196 (2008), 118-128.10.1016/j.amc.2007.05.040Search in Google Scholar

[11] CHEN, Y. M.: Multiple periodic solutions of delayed predator-prey systems with type IV functional responses, Nonlinear Anal. Real World Appl. 5 (2004), 45-53.10.1016/S1468-1218(03)00014-2Search in Google Scholar

[12] ERBE, L.-PETERSON, A.: Greens functions and comparison theorem for differential equations on measure chain, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 6 (1999), 121-137.Search in Google Scholar

[13] ERBE, L.-PETERSON, A.: Positive solution for a nonlinear differential equation on a measure chain, Math. Comput. Modelling 32 (2000), 571-585.10.1016/S0895-7177(00)00154-0Search in Google Scholar

[14] GAINES, R. E.-MAWHIN, J. L.: Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977.10.1007/BFb0089537Search in Google Scholar

[15] HE, J. W.-FAN, D. J.-WANG, K.: Almost periodic solution of multispecies competition-predator system with Holling’s type III functional response, Ann. Differential Equations 22 (2006), 160-167.Search in Google Scholar

[16] HILGER, S.: Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18-56.10.1007/BF03323153Search in Google Scholar

[17] HU, D. W.-ZHANG, Z. Q.: Four positive periodic solutions to a Lotka-Volterra cooperative system with harvesting terms, Nonlinear Anal. Real World Appl. 11 (2010), 1115-1121. 10.1016/j.nonrwa.2009.02.002Search in Google Scholar

[18] KAUFMANN, E. R.-RAFFOUL, Y. N.: Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. Math. Anal. Appl. 319 (2006), 315-325.10.1016/j.jmaa.2006.01.063Search in Google Scholar

[19] MA, Z. E.: Mathematical Modelling and Studying on Species Ecology, Education Press, Hefei, 1996 (Chinese).Search in Google Scholar

[20] MURRAY, J. D.: Mathematical Biology, Springer, New York, 1989.10.1007/978-3-662-08539-4Search in Google Scholar

[21] ŘEHÁK, P.: A critical oscillation constant as a variable of time scales for half-linear dynamic equations, Math. Slovaca 60 (2010), 237-256.10.2478/s12175-010-0009-7Search in Google Scholar

[22] SAKER, S. H.-GRACE, S. R.: Oscillation criteria for quasi-linear functional dynamic equations on time scales, Math. Slovaca 62 (2012), 501-524.10.2478/s12175-012-0026-9Search in Google Scholar

[23] SHEN, C. X.: Positive periodic solution of a kind of nonlinear food-chain system, Appl. Math. Comput. 194 (2007), 234-242.10.1016/j.amc.2007.04.020Search in Google Scholar

[24] WANG, D.: Four positive periodic solutions of a delayed plankton allelopathy system on time scales with multiple exploited (or harvesting) terms, IMA J. Appl. Math. 78 (2013) 449-473.Search in Google Scholar

[25] XU, R.-CHEN, L. S.: Conditions for global attractivity of multispecies ecological competition-predator system with Holling III type functional response, J. Math. Anal. Appl. 275 (2002), 27-43.10.1016/S0022-247X(02)00212-3Search in Google Scholar

[26] YAN, J. R.: Golbal positive periodic solutions of periodic n-species competition systems, J. Math. Anal. Appl. 356 (2009), 288-294.10.1016/j.jmaa.2009.03.013Search in Google Scholar

[27] ZHANG, B. G.-DUAN, X. H.: Oscillation of delay differential equations on time scales, Math. Comput. Modelling 36 (2002), 1307-1318.10.1016/S0895-7177(02)00278-9Search in Google Scholar

[28] ZHAO, K. H.-YE, Y.: Four positive periodic solutions to a periodic Lotka-Volterra predator-prey system with harvesting terms, Nonlinear Anal. RealWorld Appl. 11 (2010), 2448-2455.10.1016/j.nonrwa.2009.08.001Search in Google Scholar

[29] ZHANG, W. P.-ZHU, D. M.-BI, P.: Multiple positive periodic solutions of a delayed discrete predator-prey system with type IV functional responses, Appl. Math. Lett. 20 (2007), 1031-1038.10.1016/j.aml.2006.11.005Search in Google Scholar

Received: 2012-3-12
Accepted: 2012-10-17
Published Online: 2015-7-29
Published in Print: 2015-6-1

© Mathematical Institute Slovak Academy of Sciences

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0042/html
Scroll to top button