Startseite Global Dynamics of a Delayed n + m-Species Competition Predator-Prey System on Time Scales
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Global Dynamics of a Delayed n + m-Species Competition Predator-Prey System on Time Scales

  • Dongshu Wang EMAIL logo
Veröffentlicht/Copyright: 29. Juli 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we consider a delayed n + m-species competition predator-prey system on time scales with Holling III functional response and multiple exploited (or harvesting) terms. By using the continuation theorem based on Gaines and Mawhin’s coincidence degree theory, easily verifiable criteria are established for global existence of multiple positive periodic solutions for the above system.

References

[1] AGARWAL, R. P.: Difference Equations and Inequalities: Theory, Methods and Applications. Monogr. Textb. Pure Appl. Math., Marcel Dekker, New York, 2000.10.1201/9781420027020Suche in Google Scholar

[2] AGARWAL, R. P.-BOHNER, M.: Basic calculus on time scales and some of its applications, Results Math. 35 (1999), 3-22.10.1007/BF03322019Suche in Google Scholar

[3] BOHNER, M.-ELOE, P. W.: Higher order dynamic equations on measure chains; Wronskians, disconjugacy and interpolating families of functions, J. Math. Anal. Appl. 246 (2000), 639-656.10.1006/jmaa.2000.6846Suche in Google Scholar

[4] BOHNER, M.-FAN, M.-ZHANG, J. M.: Existence of periodic solutions in predatorprey and competition dynamic systems, Nonlinear Anal. Real World Appl. 7 (2006), 1193-1204.10.1016/j.nonrwa.2005.11.002Suche in Google Scholar

[5] BOHNER, M.-FAN, M.-ZHANG, J. M.: Periodicity of scalar dynamic equations and applications to population models, J. Math. Anal. Appl. 330 (2007), 1-9.10.1016/j.jmaa.2006.04.084Suche in Google Scholar

[6] BOHNER, M.-PETERSON, A. C.: Dynamic Equations on Time Scales: an Introduction with Application, Birkhauser, Boston, 2001.10.1007/978-1-4612-0201-1Suche in Google Scholar

[7] BOHNER, M.-PETERSON, A. C.: Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.10.1007/978-0-8176-8230-9Suche in Google Scholar

[8] CAI, Z. W.-HUANG, L. H.-CHEN, H. B.: Positive periodic solution for a multispecies competition-predator system with Holling III functional response and time delays, Appl. Math. Comput. 217 (2011), 4866-4878.10.1016/j.amc.2010.10.014Suche in Google Scholar

[9] CHEN, C.-CHEN, F. D.: Conditions for global attractivity of multispecies ecological competition-predator system with Holling III type functional response, J. Biomath. 19 (2004), 136-140.Suche in Google Scholar

[10] CHEN, X. X.: Periodicity in a nonlinear predator-prey system on time scales with statedependent delays, Appl. Math. Comput. 196 (2008), 118-128.10.1016/j.amc.2007.05.040Suche in Google Scholar

[11] CHEN, Y. M.: Multiple periodic solutions of delayed predator-prey systems with type IV functional responses, Nonlinear Anal. Real World Appl. 5 (2004), 45-53.10.1016/S1468-1218(03)00014-2Suche in Google Scholar

[12] ERBE, L.-PETERSON, A.: Greens functions and comparison theorem for differential equations on measure chain, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 6 (1999), 121-137.Suche in Google Scholar

[13] ERBE, L.-PETERSON, A.: Positive solution for a nonlinear differential equation on a measure chain, Math. Comput. Modelling 32 (2000), 571-585.10.1016/S0895-7177(00)00154-0Suche in Google Scholar

[14] GAINES, R. E.-MAWHIN, J. L.: Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977.10.1007/BFb0089537Suche in Google Scholar

[15] HE, J. W.-FAN, D. J.-WANG, K.: Almost periodic solution of multispecies competition-predator system with Holling’s type III functional response, Ann. Differential Equations 22 (2006), 160-167.Suche in Google Scholar

[16] HILGER, S.: Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18-56.10.1007/BF03323153Suche in Google Scholar

[17] HU, D. W.-ZHANG, Z. Q.: Four positive periodic solutions to a Lotka-Volterra cooperative system with harvesting terms, Nonlinear Anal. Real World Appl. 11 (2010), 1115-1121. 10.1016/j.nonrwa.2009.02.002Suche in Google Scholar

[18] KAUFMANN, E. R.-RAFFOUL, Y. N.: Periodic solutions for a neutral nonlinear dynamical equation on a time scale, J. Math. Anal. Appl. 319 (2006), 315-325.10.1016/j.jmaa.2006.01.063Suche in Google Scholar

[19] MA, Z. E.: Mathematical Modelling and Studying on Species Ecology, Education Press, Hefei, 1996 (Chinese).Suche in Google Scholar

[20] MURRAY, J. D.: Mathematical Biology, Springer, New York, 1989.10.1007/978-3-662-08539-4Suche in Google Scholar

[21] ŘEHÁK, P.: A critical oscillation constant as a variable of time scales for half-linear dynamic equations, Math. Slovaca 60 (2010), 237-256.10.2478/s12175-010-0009-7Suche in Google Scholar

[22] SAKER, S. H.-GRACE, S. R.: Oscillation criteria for quasi-linear functional dynamic equations on time scales, Math. Slovaca 62 (2012), 501-524.10.2478/s12175-012-0026-9Suche in Google Scholar

[23] SHEN, C. X.: Positive periodic solution of a kind of nonlinear food-chain system, Appl. Math. Comput. 194 (2007), 234-242.10.1016/j.amc.2007.04.020Suche in Google Scholar

[24] WANG, D.: Four positive periodic solutions of a delayed plankton allelopathy system on time scales with multiple exploited (or harvesting) terms, IMA J. Appl. Math. 78 (2013) 449-473.Suche in Google Scholar

[25] XU, R.-CHEN, L. S.: Conditions for global attractivity of multispecies ecological competition-predator system with Holling III type functional response, J. Math. Anal. Appl. 275 (2002), 27-43.10.1016/S0022-247X(02)00212-3Suche in Google Scholar

[26] YAN, J. R.: Golbal positive periodic solutions of periodic n-species competition systems, J. Math. Anal. Appl. 356 (2009), 288-294.10.1016/j.jmaa.2009.03.013Suche in Google Scholar

[27] ZHANG, B. G.-DUAN, X. H.: Oscillation of delay differential equations on time scales, Math. Comput. Modelling 36 (2002), 1307-1318.10.1016/S0895-7177(02)00278-9Suche in Google Scholar

[28] ZHAO, K. H.-YE, Y.: Four positive periodic solutions to a periodic Lotka-Volterra predator-prey system with harvesting terms, Nonlinear Anal. RealWorld Appl. 11 (2010), 2448-2455.10.1016/j.nonrwa.2009.08.001Suche in Google Scholar

[29] ZHANG, W. P.-ZHU, D. M.-BI, P.: Multiple positive periodic solutions of a delayed discrete predator-prey system with type IV functional responses, Appl. Math. Lett. 20 (2007), 1031-1038.10.1016/j.aml.2006.11.005Suche in Google Scholar

Received: 2012-3-12
Accepted: 2012-10-17
Published Online: 2015-7-29
Published in Print: 2015-6-1

© Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0042/pdf
Button zum nach oben scrollen