Abstract
Metal-organic frameworks (MOFs) are permeable substances with a high porosity volume, excellent chemical stability, and a distinctive shape created by strong interactions between metal ions and organic ligands. Work on the synthesis, structures, and properties of numerous MOFs demonstrates their usefulness in a variety of applications, including energy storage devices with good electrode materials, gas storage, heterogeneous catalysis, and chemical assessment. The physico-chemical characteristics of the chemical compounds in the underlying molecular graph or structure are predicted by a topological index, which is a numerical invariant. In this article, we look at two different metal-organic frameworks in terms of the number of layers, as well as metal and organic ligands. We compute the reduced reverse degree-based topological indices and some closed neighbourhood degree sum-based topological indices for these frameworks.
1 Introduction
Chemical reaction framework is a branch of applied mathematics aimed at replicating the behaviour of real-world chemical structures. Since its inception in the 19th century, it has grown in popularity among scientists, owing to advances in organic and theoretical chemistry.
Cheminformatics is a growing field in which quantitative structure-activity relationship and quantity structure-property relationship aid in the prediction of bioactivities and attributes of chemical compounds (Aslam et al., 2017; Ahmad et al., 2017; Doley et al., 2020). Physico-chemical characteristics and topological indices have been used to predict the bioactivity of organic molecules (Gutman, 2013).
The vertices in a chemical graph denote atoms or compounds, while the links depict the chemical bonding between them. Topological indices are numerical graph invariants that characterise the structure of the graph. The degree of a vertex is indicated by
Mondal et al. (2019) introduced some neighbourhood versions of degree-based indices such as Forgotten topological index
2 Preliminaries
Let
where Δ(G) is the maximum degree of the graph G and d(v) is the degree of the vertex
Inspired by this definition, Ravi et al. (2021b) defined the reduced reverse degree as:
This was introduced to study the impact of the reduced reverse degree in the QSPR analysis. Further, they defined the reduced reverse degree-based versions of Zagreb indices, forgotten index, atom bond connectivity index, arithmetic index, and analysed their relationship with the physico-chemical properties of certain COVID-19 drugs.
The reduced reverse degree versions of the aforesaid topological indices are:
Ravi and co-authors proposed open (Ravi and Desikan, 2021a) and closed (Ravi and Desikan, 2022) neighbourhood degree sum-based topological indices. They computed those indices for the graphene structures and hyaluronic acid curcumin conjugates along with the QSPR analysis of octane isomers. The closed neighbourhood indices introduced by them are as follows:
where
MOFs are used as catalysts in the preparation of numerous nanostructured materials (Yap et al., 2017). Wasson et al. (2008) gave the idea of linker competition within a metal-organic framework for structural insights. MOFs have crucial physical and chemical characteristics, such as changing organic ligands (Yin et al., 2015), transplanting (Hwang et al., 2008), post-synthetic ligand, and ion interchange (Kim et al., 2012), as well as impregnating appropriate effective materials (Thornton et al., 2009).
Various researchers (Agha et al., 2021, Ahmed and Jhung, 2014; Awais et al., 2020; Chu et al., 2020; Hong et al., 2020; Mumtaz et al., 2021; Xu et al., 2020; Zhao et al., 2021) have proposed different topological indices for the metal-organic frameworks.
In MOFs, the larger nodes correspond to zeolite imidazole (zinc-based metal), while the smaller nodes correspond to organic ligands. Between metals and organic ligands, as well between two organic ligands and two metals, the edges serve as connecting links. Now, we build two MOFs from the basic MOF by increasing the number of levels or dimensions that are made up of metals and organic ligands, with each new level or dimension adding two layers to the preceding level or dimension. For details on MOFs, refer Koo et al. (2017). The first metal-organic framework is created by forming links between the metals of two consecutive levels of the MOF, such that two metals in lower level are connected with a metal in the next level. Likewise, we create the second metal-organic framework by forming links among the organic ligands of two consecutive levels of the MOF, such that the two organic ligands in lower level are connected with an organic ligand in the next level. Furthermore, we have |V(MOF1(t))| = |V(MOF2(t))| = 48t for both MOFs and |E(MOF1(t))| = |E(MOF2(t))| = 72t − 12 for both MO’s. Figure 1 shows the first and second metal-organic framework (MOF1(t) and MOF2(t)), for dimension t = 2. The figures of the first and second metal-organic frameworks are taken from the article by Awais et al. (2020).

First (a) and second (b) metal-organic frameworks of dimension 2.
3 Reduced reverse degree-based topological descriptors for the metal-organic frameworks
In this section, we compute the topological descriptors for both the metal-organic frameworks. We compute the reduced reverse degree-based versions of the Zagreb indices, forgotten index, atom bond connectivity index, and arithmetic index of the first and second metal-organic frameworks using the reduced reverse degree-based edge partitions.
Tables 1 and 2 provide the edge partitions of first and second metal-organic frameworks, respectively, based on the reduced reverse degrees of the end vertices.
Reduced degree edge partitions of MOF1(t)
E i |
|
Count |
---|---|---|
E 1 | (6, 5) | 36 |
E 2 | (6, 4) | 36t − 12 |
E 3 | (6, 2) | 24t − 24 |
E 4 | (4, 2) | 12t − 12 |
Reduced degree edge partitions of MOF2(t)
E i |
|
Count |
---|---|---|
E 1 | (4, 3) | 12t + 24 |
E 2 | (4, 2) | 12t + 12 |
E 3 | (3, 3) | 24t − 24 |
E 4 | (3, 2) | 12t − 12 |
E 5 | (2, 2) | 12t − 12 |
Let MOF1(t) be the first metal-organic framework of dimension t, where t ≥ 2.
Applying the reduced reverse degree-based edge partitions given in Table 1 in Eqs. 3–9, we get:
Let MOF2(t) be the second metal-organic framework of dimension t, for, t ≥ 2.
Applying the reduced reverse degree-based edge partitions given in Table 2 in Eqs. 3–9, we get:
4 Neighbourhood degree sum-based topological descriptors for the metal-organic frameworks
In this section, we compute the neighbourhood degree sum based topological descriptors for both the metal-organic frameworks. We compute the topological indices using the closed neighbourhood degree-sum of the end vertices. Tables 3 and 4 provide the edge partitions of first and second metal-organic frameworks based on the closed neighbourhood degree sum on the end vertices.
Closed neighbourhood degree sum-based edge partitions of MOF1(t)
E i | (δ u , δ v ) | Count |
---|---|---|
E 1 | (8, 9) | 24 |
E 2 | (9, 11) | 12 |
E 3 | (10, 12) | 23 |
E 4 | (10, 16) | 24t − 12 |
E 5 | (11, 22) | 12 |
E 6 | (12, 16) | 12t − 24 |
E 7 | (12, 22) | 12t − 24 |
E 8 | (14, 22) | 12t − 12 |
E 9 | (16, 22) | 12t − 12 |
Closed neighbourhood degree sum-based edge partitions of MOF2(t)
E i | (δ u , δ v ) | Count |
---|---|---|
E 1 | (8, 9) | 24 |
E 2 | (9, 9) | 12 |
E 3 | (9, 11) | 12t − 12 |
E 4 | (9, 12) | 12 |
E 5 | (9, 16) | 12t − 12 |
E 6 | (10, 12) | 12 |
E 7 | (11, 13) | 24t − 24 |
E 8 | (13, 18) | 12t − 12 |
E 9 | (16, 18) | 12t − 12 |
Let MOF1(t) be the first metal-organic framework of dimension t, for t ≥ 2. Then, by applying the closed neighbourhood degree-sum edge partitions given in Table 3 in Eqs. 10–19, we get:
Let MOF2(t) be the second metal-organic framework of dimension t, for t ≥ 2. Then, by applying the closed neighbourhood degree-sum edge partitions given in Table 4 in Eqs. 10–19, we get:
5 Conclusion
Computing various topological indices of chemical graphs allows for the investigation of chemical molecules and research of how the indices connect to the physiochemical properties. In this article, we determined the cardinality of the reduced reverse degree-based and closed neighbourhood degree-sum edge partitions corresponding to two metal-organic frameworks, MOF1(t) and MOF2(t), respectively. These edge partitions were used to compute the reduced reverse degree-based topological indices and some closed neighbourhood degree sum-based topological indices for MO1(t) and MO2(t), respectively. As future work, we plan to apply these descriptors to various transformations of metal-organic frameworks and to analyse the physico-chemical properties of the metal-organic frameworks like electrochemical stability and flexibility.
Acknowledgment
The authors are indebted to the anonymous referees for their valuable comments to improve the original version of this article.
-
Funding information: The authors state no funding involved.
-
Author contributions: Vignesh Ravi: writing – original draft, writing – review and editing, methodology, and formal computations; Kalyani Desikan: writing – original draft and writing – review and editing.
-
Conflict of interest: The authors state no conflict of interest.
References
Agha K., Sumaria A., Javaid M., Awais H.M. M-polynomial based topological indices of metal-organic networks. Main. Group. Met. Chem., 2021, 44(1), 129–140.10.1515/mgmc-2021-0018Suche in Google Scholar
Ahmad M., Afzal D., Nazeer W., Kang S. On topological indices of octagonal framework. Far East. J. Math. Sci., 2017, 102, 2563–2571.10.17654/MS102112563Suche in Google Scholar
Ahmed I., Jhung S.H. Composites of metal–organic frameworks: preparation and application in adsorption. Mater. Today, 2014, 17(3), 136–146.10.1016/j.mattod.2014.03.002Suche in Google Scholar
Al-Fahemi J.H., Albis N.A., Gad E.A. QSPR models for octane number prediction. J. Theor. Chem., 2014, 2014, 520652. 10.1155/2014/520652.Suche in Google Scholar
Aslam A., Guirao J.L.G.I., Ahmad S., Gao W. Topological indices of the line graph of subdivision graph of complete bipartite graphs. Appl. Math. Inf. Sci., 2017, 11, 1631–1636.10.18576/amis/110610Suche in Google Scholar
Awais H.M., Jamal M., Javaid M. Topological properties of metal-organic frameworks. Main. Group. Met. Chem., 2020, 43(1), 67–76.10.1515/mgmc-2020-0007Suche in Google Scholar
Chu Y.M., Abid M., Qureshi M.I., Fahad A., Aslam A. Irregular topological indices of certain metal organic frameworks. Main. Group. Met. Chem., 2020, 44(1), 73–81.10.1515/mgmc-2021-0009Suche in Google Scholar
Devillers J., Balaban A.T. Topological Indices and related descriptors in QSAR and QSPR. Gordon and Breach Science Publishers, Singapore, 1999.10.1201/9781482296945Suche in Google Scholar
Doley A., Buragohain J., Bharali A. Inverse sum indeg status index of graphs and its applications to octane isomers and benzenoid hydrocarbons. Chemometrics Intell. Lab Syst., 2020, 203, 104059.10.1016/j.chemolab.2020.104059Suche in Google Scholar
Furtula B.Ch., Das K., Gutman I. Comparative analysis of symmetric division deg index as potentially useful molecular descriptor. Int. J. Quantum Chem., 2018, 118, 25659–25659.10.1002/qua.25659Suche in Google Scholar
Furtula B., Gutman I. A forgotten topological index. J. Math. Chem., 2015, 53, 1184–1190.10.1007/s10910-015-0480-zSuche in Google Scholar
Gutman I. Degree-based topological indices. Croat. Chem. Acta, 2013, 86, 351–361.10.5562/cca2294Suche in Google Scholar
Hong G., Gu Z., Javaid M., Awais H.M., Siddiqui M.K. Degree-based topological invariants of metal-organic frameworks. IEEE Access, 2020, 8, 68288–68300.10.1109/ACCESS.2020.2985729Suche in Google Scholar
Hosamani S.M. Correlation of domination parameters with physico-chemical properties of octane isomers. Appl. Math Nonlinear Sci., 2016, 1, 345–352.10.21042/AMNS.2016.2.00029Suche in Google Scholar
Hosamani S.M. Computing Sanskruti index of certain nanostructures. J. Appl. Math Comput. 2017, 54, 425–433.10.1007/s12190-016-1016-9Suche in Google Scholar
Hwang Y.K., Hong D.Y., Chang J.S., Jhung S.H., Seo Y.K., Kim J. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew. Chem. Int. Edit., 2008, 47(22), 4144–4148. 10.1002/anie.200705998.Suche in Google Scholar PubMed
Kim M., Cahill J.F., Fei H., Prather K.A., Cohen S.M. Postsynthetic ligand and cation exchange in robust metal−organic frameworks. J. Am. Chem. Soc., 2012, 134(43), 18082–18088. 10.1021/ja3079219.Suche in Google Scholar PubMed
Koo W.T., Qiao S., Ogata A.F., Jha G., Jang J.S., Chen V.T. Accelerating palladium nanowire H2 sensors using engineered nanofiltration. ACS Nano, 2017, 11(9), 9276–9285.10.1021/acsnano.7b04529Suche in Google Scholar PubMed
Kulli V.R. Reverse Zagreb and reverse hyper-Zagreb indices and their polynomials of rhombus silicate frameworks. Ann. Pure Appl. Math. 2018, 16(1), 47–51.10.22457/apam.v16n1a6Suche in Google Scholar
Mondal S., De N., Pal A. On some new neighbourhood degree-based indices. arXiv Prepr. arXiv:1906.11215, 2019.10.2478/achi-2019-0003Suche in Google Scholar
Mondal S., Dey A., De N., Pal A. QSPR analysis of some novel neighbourhood degree-based topological descriptors. Complex. Intell. Syst., 2021a, 7, 977–996.10.1007/s40747-020-00262-0Suche in Google Scholar
Mondal S., De N., Pal A. On neighborhood Zagreb index of product graphs. J. Mol. Structure, 2021b, 1223, 129210–129210.10.1016/j.molstruc.2020.129210Suche in Google Scholar PubMed PubMed Central
Mumtaz H.B., Javaid M., Awais H.M., Bonyah E. Topological indices of pent-heptagonal nanosheets via M-polynomials. J. Math., 2021, 2021, 4863993. 10.1155/2021/4863993.Suche in Google Scholar
Ravi V., Desikan K. Closed neighborhood degree sum-based topological descriptors of graphene structures. Biointerface Res. Appl. Chem., 2022, 12, 7111–7124.10.33263/BRIAC125.71117124Suche in Google Scholar
Ravi V., Desikan K. Neighbourhood degree-based topological indices of graphene structure. Biointerface Res. Appl. Chem., 2021a, 11, 13681–13694.10.33263/BRIAC115.1368113694Suche in Google Scholar
Ravi V., Siddiqui M.K., Chidambaram N., Desikan K. On topological descriptors and curvilinear regression analysis of antiviral drugs used in COVID-19 treatment. Polycycl. Aromatic Compd., 2021b. 10.1080/10406638.2021.1993941.Suche in Google Scholar
Thornton A.W., Nairn K.M., Hill J.M., Hill A.J., Hill M.R. Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage. J. Am. Chem. Soc., 2009, 131(30), 10662–10669, 10.1021/ja9036302.Suche in Google Scholar PubMed
Wasson M.C., Lyu J., Islamoglu T., Farha O.K. Linker competition within a metal−organic framework for topological insights. Inorg. Chem., 2008, 58(2), 1513–1517.10.1021/acs.inorgchem.8b03025Suche in Google Scholar PubMed
West D.B. Introduction to graph theory. Prentice Hall, USA, Vol. 2, 2001.Suche in Google Scholar
Xu P., Azeem M., Izhar M.M., Shah S.M., Binyamin M.A., Aslam A. On topological descriptors of certain metal-organic frameworks. J. Chem., 2020, 2020, 8819008. 10.1155/2020/8819008.Suche in Google Scholar
Yap M.H., Fow K.L., Chen G.Z. Synthesis and applications of MOF-derived porous nanostructures. Green Energy Env., 2017, 2(3), 218–245.10.1016/j.gee.2017.05.003Suche in Google Scholar
Yin Z., Zhou Y.L., Zeng M.H., Kurmoo M. The concept of mixed organic ligands in metal−organic frameworks: design, tuning and functions. Dalton T., 2015, 44(12), 5258–5275.10.1039/C4DT04030ASuche in Google Scholar PubMed
Zhao D., Chu Y.M., Siddiqui M.K., Ali K., Nasir M., Younas M.T., et al. On reverse degree based topological indices of polycyclic metal organic framework. Polycycl. Aromatic Compd., 2021, 21, 1–8.Suche in Google Scholar
© 2022 Vignesh Ravi and Kalyani Desikan, published by De Gruyter
This work is licensed under the Creative Commons Attribution 4.0 International License.
Artikel in diesem Heft
- Embedded three spinel ferrite nanoparticles in PES-based nano filtration membranes with enhanced separation properties
- Research Articles
- Syntheses and crystal structures of ethyltin complexes with ferrocenecarboxylic acid
- Ultra-fast and effective ultrasonic synthesis of potassium borate: Santite
- Synthesis and structural characterization of new ladder-like organostannoxanes derived from carboxylic acid derivatives: [C5H4N(p-CO2)]2[Bu2Sn]4(μ3-O)2(μ2-OH)2, [Ph2CHCO2]4[Bu2Sn]4(μ3-O)2, and [(p-NH2)-C6H4-CO2]2[Bu2Sn]4(μ3-O)2(μ2-OH)2
- HPA-ZSM-5 nanocomposite as high-performance catalyst for the synthesis of indenopyrazolones
- Conjugation of tetracycline and penicillin with Sb(v) and Ag(i) against breast cancer cells
- Simple preparation and investigation of magnetic nanocomposites: Electrodeposition of polymeric aniline-barium ferrite and aniline-strontium ferrite thin films
- Effect of substrate temperature on structural, optical, and photoelectrochemical properties of Tl2S thin films fabricated using AACVD technique
- Core–shell structured magnetic MCM-41-type mesoporous silica-supported Cu/Fe: A novel recyclable nanocatalyst for Ullmann-type homocoupling reactions
- Synthesis and structural characterization of a novel lead coordination polymer: [Pb(L)(1,3-bdc)]·2H2O
- Comparative toxic effect of bulk zinc oxide (ZnO) and ZnO nanoparticles on human red blood cells
- In silico ADMET, molecular docking study, and nano Sb2O3-catalyzed microwave-mediated synthesis of new α-aminophosphonates as potential anti-diabetic agents
- Synthesis, structure, and cytotoxicity of some triorganotin(iv) complexes of 3-aminobenzoic acid-based Schiff bases
- Rapid Communications
- Synthesis and crystal structure of one new cadmium coordination polymer constructed by phenanthroline derivate and 1,4-naphthalenedicarboxylic acid
- A new cadmium(ii) coordination polymer with 1,4-cyclohexanedicarboxylate acid and phenanthroline derivate: Synthesis and crystal structure
- Synthesis and structural characterization of a novel lead dinuclear complex: [Pb(L)(I)(sba)0.5]2
- Special Issue: Theoretical and computational aspects of graph-theoretic methods in modern-day chemistry (Guest Editors: Muhammad Imran and Muhammad Javaid)
- Computation of edge- and vertex-degree-based topological indices for tetrahedral sheets of clay minerals
- Structures devised by the generalizations of two graph operations and their topological descriptors
- On topological indices of zinc-based metal organic frameworks
- On computation of the reduced reverse degree and neighbourhood degree sum-based topological indices for metal-organic frameworks
- An estimation of HOMO–LUMO gap for a class of molecular graphs
- On k-regular edge connectivity of chemical graphs
- On arithmetic–geometric eigenvalues of graphs
- Mostar index of graphs associated to groups
- On topological polynomials and indices for metal-organic and cuboctahedral bimetallic networks
- Finite vertex-based resolvability of supramolecular chain in dialkyltin
- Expressions for Mostar and weighted Mostar invariants in a chemical structure
Artikel in diesem Heft
- Embedded three spinel ferrite nanoparticles in PES-based nano filtration membranes with enhanced separation properties
- Research Articles
- Syntheses and crystal structures of ethyltin complexes with ferrocenecarboxylic acid
- Ultra-fast and effective ultrasonic synthesis of potassium borate: Santite
- Synthesis and structural characterization of new ladder-like organostannoxanes derived from carboxylic acid derivatives: [C5H4N(p-CO2)]2[Bu2Sn]4(μ3-O)2(μ2-OH)2, [Ph2CHCO2]4[Bu2Sn]4(μ3-O)2, and [(p-NH2)-C6H4-CO2]2[Bu2Sn]4(μ3-O)2(μ2-OH)2
- HPA-ZSM-5 nanocomposite as high-performance catalyst for the synthesis of indenopyrazolones
- Conjugation of tetracycline and penicillin with Sb(v) and Ag(i) against breast cancer cells
- Simple preparation and investigation of magnetic nanocomposites: Electrodeposition of polymeric aniline-barium ferrite and aniline-strontium ferrite thin films
- Effect of substrate temperature on structural, optical, and photoelectrochemical properties of Tl2S thin films fabricated using AACVD technique
- Core–shell structured magnetic MCM-41-type mesoporous silica-supported Cu/Fe: A novel recyclable nanocatalyst for Ullmann-type homocoupling reactions
- Synthesis and structural characterization of a novel lead coordination polymer: [Pb(L)(1,3-bdc)]·2H2O
- Comparative toxic effect of bulk zinc oxide (ZnO) and ZnO nanoparticles on human red blood cells
- In silico ADMET, molecular docking study, and nano Sb2O3-catalyzed microwave-mediated synthesis of new α-aminophosphonates as potential anti-diabetic agents
- Synthesis, structure, and cytotoxicity of some triorganotin(iv) complexes of 3-aminobenzoic acid-based Schiff bases
- Rapid Communications
- Synthesis and crystal structure of one new cadmium coordination polymer constructed by phenanthroline derivate and 1,4-naphthalenedicarboxylic acid
- A new cadmium(ii) coordination polymer with 1,4-cyclohexanedicarboxylate acid and phenanthroline derivate: Synthesis and crystal structure
- Synthesis and structural characterization of a novel lead dinuclear complex: [Pb(L)(I)(sba)0.5]2
- Special Issue: Theoretical and computational aspects of graph-theoretic methods in modern-day chemistry (Guest Editors: Muhammad Imran and Muhammad Javaid)
- Computation of edge- and vertex-degree-based topological indices for tetrahedral sheets of clay minerals
- Structures devised by the generalizations of two graph operations and their topological descriptors
- On topological indices of zinc-based metal organic frameworks
- On computation of the reduced reverse degree and neighbourhood degree sum-based topological indices for metal-organic frameworks
- An estimation of HOMO–LUMO gap for a class of molecular graphs
- On k-regular edge connectivity of chemical graphs
- On arithmetic–geometric eigenvalues of graphs
- Mostar index of graphs associated to groups
- On topological polynomials and indices for metal-organic and cuboctahedral bimetallic networks
- Finite vertex-based resolvability of supramolecular chain in dialkyltin
- Expressions for Mostar and weighted Mostar invariants in a chemical structure