Home On topological polynomials and indices for metal-organic and cuboctahedral bimetallic networks
Article Open Access

On topological polynomials and indices for metal-organic and cuboctahedral bimetallic networks

  • Farhana Yasmeen , Muhammad Imran EMAIL logo , Shehnaz Akhter , Yasir Ali and Kashif Ali
Published/Copyright: August 30, 2022

Abstract

A molecular graph consists of bonds and atoms, where atoms are present as vertices and bonds are present as edges. We can look at topological invariants and topological polynomials that furnish bioactivity and physio-chemical features for such molecular graphs. These topological invariants, which are usually known as graph invariants, are numerical quantities that relate to the topology of a molecular graph. Let m pq (X) be the number of edges in X such that (ζ a , ζ b ) = (p, q), where ζ a (or ζ b ) present the degree of a (or b). The M-polynomial for X can be determined with the help of relation M ( X ; x , y ) = p q m p q ( X ) x p y q . In this study, we calculate the M-polynomial, forgotten polynomial, sigma polynomial and Sombor polynomial, and different topological invariants of critical importance, referred to as first, second, modified and augmented Zagreb, inverse and general Randić, harmonic, symmetric division; forgotten and inverse invariants of chemical structures namely metal-organic networks (transition metal-tetra cyano benzene organic network) and cuboctahedral bimetallic networks (MOPs) are retrieved using a generic topological polynomial approach. We also draw the two-dimensional graphical representation of outcomes that express the relationship between topological indices and polynomial structural parameters.

1 Introduction

The topological invariants, which are usually known as graph invariants, are numerical quantities that relate to the topology of a molecular graph. Topological invariants are used in graph theory to investigate the structural possession of graphs. These compounds are used in a wide range of fields including chemistry, drug discovery, pharmaceutical, and discrete dynamical systems. Graph theory is an important part of mathematics that allows us to explore the features of any structure with ease. Chemical graph theory is crucial in the modeling and designing of any chemical structure. Mathematical chemistry appeals to scientists since it studies and works on a large number of topological invariants of a chemical compound in order to anticipate its physicochemical properties (Brückler et al., 2011). Molecular compounds have a wide range of applications in business, industrial, medicinal chemistry, commercial, everyday life, and research (Imran et al., 2018a,b).

Let X be a simple and finite graph with V(X) be a vertex set and E(X) be an edge set. A graph X = (V(X), E(X)) is connected if each pair of its vertices has a path connecting them. A network is simply defined as a connected graph with numerous edges and no loops. The degree of a given vertex a is the number of edges in X which are connecting directly to the vertex, and it is represented as ζ a . When calculating topological invariants, one should have a solid understanding of the fundamentals of graph theory. The topological invariants are calculated by figuring out the single polynomial. Several graph polynomials have been established in the literature and have played a major role in mathematical chemistry, including matching (Farrell, 1979), Schultz (Hassani et al., 2013), and Tutte (Došlić, 2013) polynomials, with M-polynomials and Hosoya polynomials (Hosoya, 1988) being the most notable. The Hosoya polynomial, also known as the Wiener polynomial, is used to establish the distance-based topological invariants in chemistry. Similarly, in defining degree-based topological invariants of graphs, the M-polynomial (Ajmal et al., 2017a,b) is key. According to Deutsch and Klavžar (2015), the M-polynomial for X is defined as follows:

(1) M ( X ; x , y ) = δ p q Δ m p q ( X ) x p y q

where δ = min{ζ a : ∀aV(X)}, Δ = max{ζ a : ∀aV(X)}, and m pq (X) be the number of edges abE(X) as (ζ a ,ζ b ) = (p, q).

The forgotten polynomial for X is written as follows:

(2) F ( X ; x ) = a b E ( X ) x ( ( ζ a ) 2 + ( ζ b ) 2 )

The sigma polynomial for X is characterized as:

(3) S ( X ; x ) = a b E ( X ) x ( ζ a ζ b ) 2

The Sombor polynomial for X is defined as:

(4) SO ( X ; x ) = a b E ( X ) x ( ζ a ) 2 + ( ζ b ) 2

In most cases, multiple equations can be used to compute topological invariants for certain classes. We can obtain several vertex-based invariants with the help of M-polynomial by using only the specific differential, integral, or both operators on corresponding polynomials. The authors were able to construct closed forms of degree-related invariants for triangular boron nanotubes (Munir et al., 2016) and the Jahangir graph (Munir et al., 2017) using M-polynomial. Experiments demonstrate that no one topological invariant is powerful enough to deliberate all of a compound’s physiochemical possessions, although they can do so to some extent when used in combination. Randić (1975) introduced the first degree-based topological invariant, which is known as the Randić invariant, 1975, and in some literature, it was also written as molecular connectivity invariant (Amic et al., 1998). Bollobás and Erdos (1998) developed a general form of the Randić invariant, which is presented as follows:

(5) R ρ ( X ) = a b E ( X ) 1 ( ζ a ζ b ) ρ

where ρ . Chemists and mathematicians investigated this invariant extensively; after that, they concluded that the Randić invariant has a correlation in the Kovats constants of the molecules and the calculations of the boiling point. The inverse Randić RR ρ (X) invariant is stated as follows:

(6) R R ρ ( X ) = a b E ( X ) ( ζ a ζ b ) ρ

where ρ . The Randić invariant’s compatibility with alkane physicochemical properties is remarkable. Several remarkable applications of the Randić invariant (Randić, 1975) are discovered. The first M 1 and the second M 2 Zagreb invariants were presented by Gutman and Trinastić (1972):

(7) M 1 ( X ) = a V ( X ) ( ζ a ) 2 = a b E ( X ) ( ζ a + ζ b )

(8) M 2 ( X ) = a b E ( X ) ζ a ζ b

For a simple graph X, the modified Zagreb invariant can be introduced in the study by Baig et al. (2017) as follows:

(9) M 2 m ( X ) = a b E ( X ) 1 ζ a ζ b

The symmetric division SDD(X) is a most effective and good predictor for the computation of the total surface area of polychlorobiphenyl and is investigated for simple and connected graphs as:

(10) SDD ( X ) = a b E ( X ) min ( ζ a , ζ b ) max ( ζ a , ζ b ) + max ( ζ a , ζ b ) min ( ζ a , ζ b )

Another generalization of the Randić invariant is the harmonic invariant and that is introduced as follows:

(11) H ( X ) = a b E ( X ) 2 ζ a + ζ b

The inverse sum indeg (or ISI) invariant is a reliable and most important predictor for the computation of the surface area of octane isomer, and its extremal graphs can be found by using mathematical chemistry. The inverse sum indeg ISI(X) invariant is specified as follows:

(12) ISI ( X ) = a b E ( X ) ζ a ζ b ζ a + ζ b

The augmented Zagreb invariant of X was established by Furtula et al. (2010), and it is defined as follows:

(13) A ( X ) = a b E ( X ) ζ a ζ b ζ a + ζ b 2 3

Furtula and Gutman (2015) proposed the forgotten invariant (also known as F-invariant) and is written as follows:

(14) FI ( X ) = a b E ( X ) ( ( ζ a ) 2 + ( ζ b ) 2 )

The sigma invariant (Grigory and Alexander, 2021) is defined as follows:

(15) S ( X ) = a b E ( X ) ( ζ a ζ b ) 2

Gutman (2021) recently developed the concept of Sombor invariant, which is defined as follows:

(16) SO ( X ) = a b E ( X ) ( ζ a ) 2 + ( ζ b ) 2

We refer to the concerned readers some indices-related articles such as those of Ajmal et al. (2017a,b), Akhter and Imran (2016), Akhter et al. (2016, 2017, 2018, 2020, 2021), Ali et al. (2016, 2017), Gao et al. (2019, 2020), Imran et al. (2020a,b), Yang et al. (2019), and Yasmeen et al. (2021). In Table 1, we give the relation of polynomials and the degree-related topological invariants, where D x = x f ( x , y ) x , D y = y f ( x , y ) y , S x = 0 x f ( t , y ) t d t , S y = 0 y f ( x , t ) t d t , J(f(x, y)) = f(x, x), and Q ρ (f(x, y)) = x ρ f(x, y).

Table 1

Derivation of some degree-related topological invariants from polynomials

Topological invariant Formulae based on polynomials
First Zagreb invariant M 1(X) (D x +D y )M(X; x, y)| x=y=1
Second Zagreb invariant M 2(X) (D x D y )M(X; x, y)| x=y=1
Modified second Zagreb invariant M 2 m ( X ) (S x S y )M(X; x, y)| x=y=1
Randić invariant R ρ (X). (D x ρ D y ρ )M(X; x, y)| x=y=1
Inverse Randić invariant RR ρ (X) (S x ρ S y ρ )M(X; x, y)| x=y=1
Harmonic invariant H(X) 2S x JM(X; x, y)| x=1
Inverse sum indeg invariant ISI(X) S x JD x D y M(X; x, y)| x=1
Augmented Zagreb invariant A(X) (S x 3 Q −2 JD x 3 D y 3)M(X; x, y)| x=1
Forgotten invariant FI(X) D x F(X; x)| x=1
Sigma invariant S(X) D x S(X; x)| x=1
Sombor invariant SO(X) D x SO(X; x)| x=1

2 Main results

The novel planar metal-organic networks (transition metal-tetra cyano benzene organic network [TM-TCNB]) and cuboctahedral bimetallic networks (MOPs) are now discussed in terms of their degree-based topological features. Interestingly, the metal-organic networks (TM-TCNB) and cuboctahedral bimetallic (MOPs) systems are metallic in any case in one turn heading and show long-run ferromagnetic coupling on the off chance that for attractive structures, which speak to ideal candidates and an intriguing possibility of uncommon applications in spintronics.

In this article, we calculate the M-, F-, sigma, and Sombor polynomials for these metal-organic networks (TM-TCNB) and cuboctahedral bimetallic networks (MOPs), and then with the help of these polynomials, we compute first, second, modified, and augmented Zagreb invariants, general and inverse Randić, symmetric division, harmonic, inverse sum indeg, forgotten invariants, sigma, and Sombor invariants of TM-TCNB and MOPs. In the computation of above polynomials and invariants, we use some techniques from combinatorial and analytic computations, also vertex and edge partition, graph theoretical tools, counting of vertex degrees and sum of degrees of neighboring vertices, and also, we use the MATLAB for plotting our results.

3 Molecular structure of TM-TCNB

The attractive frameworks of TM-TCNB have a fragmentary absolute attractive second, so the entire arrangement of TM-TCNB is metallic or half-metallic (metallic a solitary way of turn and protecting in the other heading of the turn). The neighborhood attractive snapshots of the TM (TM = Ti, V, Cr, and Co) in TM-TCNB structures are diminished by turn electrons inverse to the neighborhood turn which are found on the natural ligands and which encompass the focal molecule of TM. The materials of Fe-TCNB, Co-TCNB, Ni-TCNB, and Zn-TCNB are completely metallic. Be that as it may, the metal–natural systems of Ti-TCNB, VTCNB, Cr-TCNB, and Mn-TCNB are half-metallic since they speak to a hole in a solitary turn bearing (Figure 1). Additionally, the TM-TCNB monolayers are attractive with TM = Ti, V, Cr, and Co. Conversely, Ni-TCNB and Zn-TCNB are non-attractive. For the entire arrangement of TM-TCNB (with the exception of TM = Ni and Zn), there is a fragmented screening impact (lessening of the attractive second), and the nearby attractive snapshot of the molecule (Ti, V, Cr, and Co) is somewhat screened by turn captivated electrons on the natural ligands encompassing TM on account of TM-TCNB. The physical wonder of screening is thoroughly missing in TM-Pc.

Figure 1 
               Structures of (a) 2DTM-Pc and the TM-TCNB, (b) metal-organic networks. The TM, N, C, and H atoms are highlighted in cyan, blue, yellow, and red, respectively.
Figure 1

Structures of (a) 2DTM-Pc and the TM-TCNB, (b) metal-organic networks. The TM, N, C, and H atoms are highlighted in cyan, blue, yellow, and red, respectively.

Let TM-TCNB be the chemical graph with n unit cells in the plane (Figure 1).

The number of vertices and edges of TM-TCNB are 26n−16 and 152n−24, respectively. Since there are four types of vertices in TM-TCNB namely the vertices of degrees 1, 2, 3, 4. The edge partition of TM-TCNB based on degrees of end vertices of each edge is depicted in Table 2.

Table 2

Edge partition based on degrees of end vertices of each edge

(ζ(a), ζ(b)) (1,3) (2,2) (2,3) (3,3) (3,4)
Frequency 12n − 4 8n + 8 32n 84n − 28 16n
Set of edges E 1 E 2 E 3 E 4 E 5

3.1 Polynomials of TM-TCNB

Let X be a molecular graph of TM-TCNB. Then, by using Table 2 in Eqs. 14, the M-polynomial, F-polynomial, S-polynomial, and SO-polynomial for TM-TCNB are computed as follows:

M ( ( TM - TCNB ) ; x , y ) =   δ p q m p q ( TM - TCNB ) x p y q =   a b E 1 m 13 ( TM - TCNB ) x y 3 + a b E 2 m 22 ( TM - TCNB ) x 2 y 2 + a b E 3 m 23 ( TM - TCNB ) x 2 y 3 + a b E 4 m 33 ( TM - TCNB ) x 3 y 3 + a b E 5 m 34 ( TM - TCNB ) x 3 y 4 =   | E 1 | x y 3 + | E 2 | x 2 y 2 + | E 3 | x 2 y 3 + | E 4 | x 3 y 3 + | E 5 | x 3 y 4 =   4 ( 3 n 1 ) x y 3 + 8 ( n + 1 ) x 2 y 2 + 32 n x 2 y 3 + 28 ( 3 n 1 ) x 3 y 3 + 16 n x 3 y 4

F ( ( TM - TCNB ) ; x ) = a b E ( X ) x ( ( ζ a ) 2 + ( ζ b ) 2 ) = a b E 1 m 13 ( TM - TCNB ) x 10 + a b E 2 m 22 ( TM - TCNB ) x 8 + a b E 3 m 23 ( TM - TCNB ) x 13 + a b E 4 m 33 ( TM - TCNB ) x 18 + a b E 5 m 34 ( TM - TCNB ) x 25 = | E 1 | x 10 + | E 2 | x 8 + | E 3 | x 13 + | E 4 | x 18 + | E 5 | x 25 = 4 ( 3 n 1 ) x 10 + 8 ( n + 1 ) x 8 + 32 n x 13 + 28 ( 3 n 1 ) x 18 + 16 n x 25

S ( ( TM - TCNB ) ; x ) = a b E ( X ) x ( ζ a ζ b ) 2 = a b E 1 m 13 ( TM - TCNB ) x 4 + a b E 2 m 22 ( TM - TCNB ) + a b E 3 m 23 ( TM - TCNB ) x + a b E 4 m 33 ( TM - TCNB ) + a b E 5 m 34 ( TM - TCNB ) x

S ( ( TM - TCNB ) ; x ) = | E 1 | x 4 + | E 2 | + | E 3 | x + | E 4 | + | E 5 | x = 4 ( 3 n 1 ) x 4 + 8 ( n + 1 ) + 32 n x + 28 ( 3 n 1 ) + 16 n x = 4 ( 3 n 1 ) x 4 + 48 n x + 4 ( 23 n 5 )

SO ( ( TM - TCNB ) ; x ) =   a b E ( X ) x ( ζ a ) 2 + ( ζ b ) 2 =   a b E 1 m 13 ( TM - TCNB ) x 10 + a b E 2 m 22 ( TM - TCNB ) x 8 + a b E 3 m 23 ( TM - TCNB ) x 13 + a b E 4 m 33 ( TM - TCNB ) x 18 + a b E 5 m 34 ( ( TM - TCNB ) ) x 25 = | E 1 | x 10 + | E 2 | x 2 2 + | E 3 | x 13 + | E 4 | x 18 + | E 5 | x 5 = 4 ( 3 n 1 ) x 10 + 8 ( n + 1 ) x 2 2 + 32 n x 13 + 28 ( 3 n 1 ) x 3 2 + 16 n x 5

Figure 2 shows a graphical presentation of M-polynomial, F-polynomial, S-polynomial, and SO-polynomial of TM-TCNB, respectively.

Figure 2 
                  (a) M-polynomial, (b) F-polynomial, (c) S-polynomial, and (d) SO-polynomial of TM-TCNB.
Figure 2

(a) M-polynomial, (b) F-polynomial, (c) S-polynomial, and (d) SO-polynomial of TM-TCNB.

3.2 Computation of topological invariants with the help of polynomials of TM-TCNB

Now, we calculate the topological invariants for TM-TCNB, including first, second, modified, and augmented Zagreb invariants, Randić invariants, SSD invariant, harmonic invariant, ISI invariant, F invariant, S invariant, and SO invariant. From Table 1 and the result of M-polynomial, we acquire the following invariants:

D x ( f ( x , y ) ) =   x f ( x , y ) x = x ( ( 12 n 4 ) y 3 + 2 ( 8 n + 8 ) x y 2 + 2 ( 32 n ) x y 3 + 3 ( 84 n 28 ) x 2 y 3 + 3 ( 16 n ) x 2 y 4 ) = 4 ( 3 n 1 ) x y 3 + 16 ( n + 1 ) x 2 y 2 + 64 n x 2 y 3 + 84 ( 3 n 1 ) x 3 y 3 + 48 n x 3 y 4

D y ( f ( x , y ) ) =   y f ( x , y ) y = y ( 3 ( 12 n 4 ) x y 2 + 2 ( 8 n + 8 ) x 2 y + 3 ( 32 n ) x 2 y 2 + 3 ( 84 n 28 ) x 3 y 2 + 4 ( 16 n ) x 3 y 3 ) = 12 ( 3 n 1 ) x y 3 + 16 ( n + 1 ) x 2 y 2 + 96 n x 2 y 3 + 84 ( 3 n 1 ) x 3 y 3 + 64 n x 3 y 4

D x D y ( f ( x , y ) ) =   x x ( D y ( f ( x , y ) ) ) = x ( 12 ( 3 n 1 ) y 3 + 2 × 16 ( n + 1 ) x y 2 + 2 ( 96 n ) x y 3 + 3 ( 252 n 84 ) x 2 y 3 + 3 ( 64 n ) x 2 y 4 ) = 12 ( 3 n 1 ) x y 3 + 32 ( n + 1 ) x 2 y 2 + 192 n x 2 y 3 + 252 ( 3 n 1 ) x 3 y 3 + 192 n x 3 y 4

S x ( f ( x , y ) ) = 0 x f ( t , y ) t d t = ( 12 n 4 ) x y 3 + 1 2 ( 8 n + 8 ) x 2 y 2 + 1 2 ( 32 n ) x 2 y 3 + 1 3 ( 84 n 28 ) x 3 y 3 + 1 3 ( 16 n ) x 3 y 4 = 4 ( 3 n 1 ) x y 3 + 4 ( n + 1 ) x 2 y 2 + 16 n x 2 y 3 + 28 3 ( 3 n 1 ) x 3 y 3 + 16 n 3 x 3 y 4

S y ( f ( x , y ) ) = 0 y f ( x , t ) t d t = 1 3 ( 12 n 4 ) x y 3 + 1 2 ( 8 n + 8 ) x 2 y 2 + 1 3 ( 32 n ) x 2 y 3 + 1 3 ( 84 n 28 ) x 3 y 3 + 1 4 ( 16 n ) x 3 y 4 =   4 3 ( 3 n 1 ) x y 3 + 4 ( n + 1 ) x 2 y 2 + 32 n 3 x 2 y 3 + 28 3 ( 3 n 1 ) x 3 y 3 + 4 n x 3 y 4

S x S y ( f ( x , y ) ) = 4 3 ( 3 n 1 ) x y 3 + 1 2 ( 4 ( n + 1 ) ) x 2 y 2 + 1 2 32 n 3 x 2 y 3 + 1 3 28 3 ( 3 n 1 ) x 3 y 3 + 1 3 ( 4 n ) x 3 y 4 = 4 3 ( 3 n 1 ) x y 3 + 2 ( n + 1 ) x 2 y 2 + 16 n 3 x 2 y 3 + 28 9 ( 3 n 1 ) x 3 y 3 + 4 n 3 x 3 y 4

D x ρ D y ρ ( f ( x , y ) ) = 4 ( 3 n 1 ) ( 3 ) ρ + 1 x y 3 + ( n + 1 ) ( 2 ) 2 ρ + 5 x 2 y 2 + 32 n ( 6 ) ρ + 1 x 2 y 3 + 28 ( 3 n 1 ) ( 9 ) ρ + 1 x 3 y 3 + 16 n ( 12 ) ρ + 1 x 3 y 4 S x ρ S y ρ ( f ( x , y ) ) = 4 3 ρ + 1 ( 3 n 1 ) x y 3 + 2 1 2 ρ ( n + 1 ) x 2 y 2 + 2 4 ρ 3 ρ + 1 n x 2 y 3 + 28 9 ρ + 1 ( 3 n 1 ) x 3 y 3 + 4 1 ρ 3 ρ + 1 n x 3 y 4

S y D x ( f ( x , y ) ) = 1 3 ( 12 n 4 ) x y 3 + 1 2 ( 16 n + 16 ) x 2 y 2 + 1 3 ( 64 n ) x 2 y 3 + 1 3 ( 252 n 84 ) x 3 y 3 + 1 4 ( 48 n ) x 3 y 4 = 4 3 ( 3 n 1 ) x y 3 + 8 ( n + 1 ) x 2 y 2 + 64 n 3 x 2 y 3 + 28 ( 3 n 1 ) x 3 y 3 + 12 n x 3 y 4

S x D y ( f ( x , y ) ) = ( 36 n 12 ) x y 3 + 1 2 ( 16 n + 16 ) x 2 y 2 + 1 2 ( 96 n ) x 2 y 3 + 1 3 ( 252 n 84 ) x 3 y 3 + 1 3 ( 64 n ) x 3 y 4 = 12 ( 3 n 1 ) x y 3 + 8 ( n + 1 ) x 2 y 2 + 48 n x 2 y 3 + 28 ( 3 n 1 ) x 3 y 3 + 64 n 3 x 3 y 4

J ( f ( x , y ) ) = f ( x , x )   =   4 ( 3 n 1 ) x 4 + 8 ( n + 1 ) x 4 + 32 n x 5 + 28 ( 3 n 1 ) x 6 + 16 n x 7 = 4 ( 5 n + 1 ) x 4 + 32 n x 5 + 28 ( 3 n 1 ) x 6 + 16 n x 7 S x J ( f ( x , y ) ) = 1 4 × 4 ( 5 n + 1 ) x 4 + 1 5 ( 32 n ) x 5 + 1 6 × 28 ( 3 n 1 ) x 6 + 1 7 ( 16 n ) x 7 = ( 5 n + 1 ) x 4 + 32 n 5 x 5 + 14 3 ( 3 n 1 ) x 6 + 16 n 7 x 7 2 S x J ( f ( x , y ) ) = 2 ( 5 n + 1 ) x 4 + 64 n 5 x 5 + 28 3 ( 3 n 1 ) x 6 + 32 n 7 x 7

J D x D y ( f ( x , y ) ) = 12 ( 3 n 1 ) x 4 + 32 ( n + 1 ) x 4 + 192 n x 5 + 252 ( 3 n 1 ) x 6 + 192 n x 7 = 4 ( 17 n 5 ) x 4 + 192 n x 5 + 252 ( 3 n 1 ) x 6 + 192 n x 7 S x J D x D y ( f ( x , y ) ) = 1 4 × 4 ( 17 n 5 ) x 4 + 1 5 ( 192 n ) x 5 + 1 6 × 252 ( 3 n 1 ) x 6 + 1 7 ( 192 n ) x 7 = ( 17 n 5 ) x 4 + 192 n 5 x 5 + 42 ( 3 n 1 ) x 6 + 192 n 7 x 7

D y 2 ( f ( x , y ) ) = 36 ( 3 n 1 ) x y 3 + 32 ( n + 1 ) x 2 y 2 + 288 n x 2 y 3 + 252 ( 3 n 1 ) x 3 y 3 + 256 n x 3 y 4 D y 3 ( f ( x , y ) ) = 108 ( 3 n 1 ) x y 3 + 64 ( n + 1 ) x 2 y 2 + 864 n x 2 y 3 + 756 ( 3 n 1 ) x 3 y 3 + 1024 n x 3 y 4 D x D y 3 ( f ( x , y ) ) = 108 ( 3 n 1 ) x y 3 + 128 ( n + 1 ) x 2 y 2 + 1728 n x 2 y 3 + 2268 ( 3 n 1 ) x 3 y 3 + 3072 n x 3 y 4 D x 2 D y 3 ( f ( x , y ) ) = 108 ( 3 n 1 ) x y 3 + 256 ( n + 1 ) x 2 y 2 + 3456 n x 2 y 3 + 6804 ( 3 n 1 ) x 3 y 3 + 9216 n x 3 y 4 D x 3 D y 3 ( f ( x , y ) ) =   108 ( 3 n 1 ) x y 3 + 512 ( n + 1 ) x 2 y 2 + 6912 n x 2 y 3 + 20412 ( 3 n 1 ) x 3 y 3 + 27648 n x 3 y 4

J D x 3 D y 3 ( f ( x , y ) ) = 108 ( 3 n 1 ) x 4 + 512 ( n + 1 ) x 4 + 6912 n x 5 + 20412 ( 3 n 1 ) x 6 + 27648 n x 7 = 4 ( 209 n + 101 ) x 4 + 6912 n x 5 + 20412 ( 3 n 1 ) x 6 + 27648 n x 7 Q 2 J D x 3 D y 3 ( f ( x , y ) ) = 4 ( 209 n + 101 ) x 2 + 6912 n x 3 + 20412 ( 3 n 1 ) x 4 + 27648 n x 5 S x Q 2 J D x 3 D y 3 ( f ( x , y ) ) = 2 ( 209 n + 101 ) x 2 + 2304 n x 3 + 5103 ( 3 n 1 ) x 4 + 27648 n 5 x 5 S x 2 Q 2 J D x 3 D y 3 ( f ( x , y ) ) = ( 209 n 101 ) x 2 + 768 n x 3 + 5103 4 ( 3 n 1 ) x 4 + 27648 n 25 x 5 S x 3 Q 2 J D x 3 D y 3 ( f ( x , y ) ) = 1 2 ( 209 n 101 ) x 2 + 256 n x 3 + 5103 16 ( 3 n 1 ) x 4 + 27648 n 125 x 5

Now, the second condition, i.e., x = y = 1 on above-computed expressions is applied to get the exact formulae of topological indices.

M 1 ( TM-TCNB ) = ( D x + D y ) ( TM-TCNB ; x , y ) | x   =   y   =   1 = ( 16 ( 3 n 1 ) x y 3 + 32 ( n + 1 ) x 2 y 2 + 160 n x 2 y 3 + 168 ( 3 n 1 ) x 3 y 3 + 112 n x 3 y 4 ) | x   =   y   =   1 = 16 ( 3 n 1 ) + 32 ( n + 1 ) + 160 n + 168 ( 3 n 1 ) + 112 n )   =   856 n 152

M 2 ( TM-TCNB ) = ( D x D y ) ( TM-TCNB ; x , y ) | x   =   y   =   1 = ( 12 ( 3 n 1 ) x y 3 + 32 ( n + 1 ) x 2 y 2 + 192 n x 2 y 3 + 252 ( 3 n 1 ) x 3 y 3 + 192 n x 3 y 4 ) | x   =   y   =   1 = 12 ( 3 n 1 ) + 32 ( n + 1 ) + 192 n + 252 ( 3 n 1 ) + 192 n   =   1208 n 232

M 1 m ( TM-TCNB ) = ( S x S y ) ( TM-TCNB ) ; x , y ) | x   =   y   =   1 = 4 3 ( 3 n 1 ) x 1 y 3 + 2 ( n + 1 ) x 2 y 2 + 16 n 3 x 2 y 3 + 28 9 ( 3 n 1 ) x 3 y 3 + 4 n 3 x 3 y 4 | x   =   y   =   1 =   4 3 ( 3 n 1 ) + 2 ( n + 1 ) + 16 n 3 + 28 9 ( 3 n 1 ) + 4 n 3   =   22 n 22 9

R R ρ ( TM-TCNB ) ) =   ( S x ρ S y ρ ) ( TM-TCNB ; x , y ) | x   =   y   =   1 = 4 3 ρ + 1 ( 3 n 1 ) x y 3 + 2 1 2 ρ ( n + 1 ) x 2 y 2 + 2 4 ρ 3 ρ + 1 n x 2 y 3 + 28 9 ρ + 1 ( 3 n 1 ) x 3 y 3 + 4 1 ρ 3 ρ + 1 n x 3 y 4 x   =   y   =   1 =   4 3 ρ + 1 ( 3 n 1 ) + 2 1 2 ρ ( n + 1 ) + 2 4 ρ 3 ρ + 1 n + 28 9 ρ + 1 ( 3 n 1 ) + 4 1 ρ 3 ρ + 1 n

SSD(TM-TCNB) = ( D x S y + D y S x ) ( TM - TCNB ; x , y ) | x   =   y   =   1 =   4 3 ( 3 n 1 ) x y 3 + 8 ( n + 1 ) x 2 y 2 + 64 n 3 x 2 y 3 + 28 ( 3 n 1 ) x 3 y 3 + ( 12 n ) x 3 y 4 + 12 ( 3 n 1 ) x y 3 + 8 ( n + 1 ) x 2 y 2 + 64 n x 2 y 3 + 28 ( 3 n 1 ) x 3 y 3 + 64 n 3 x 3 y 4 x   =   y   =   1 = 40 3 ( 3 n 1 ) + 16 ( n + 1 ) + 208 n 3 + 56 ( 3 n 1 ) + 100 n 3 = 980 3 n 160 3

I ( TM-TCNB ) = ( S x J D x D y ) ( TM - TCNB ; x , y ) | x   =   1 = ( 17 n 5 ) x 4 + 192 n 5 x 5 + 42 ( 3 n 1 ) x 6 + 192 n 7 x 7 | x   =   1 = ( 17 n 5 ) + 192 n 5 + 42 ( 3 n 1 ) + 192 n 7 = 7309 35 n 47

H ( TM-TCNB ) = ( 2 S x J ) ( TM - TCNB ; x , y ) | x   =   1 = 2 ( 5 n + 1 ) x 4 + 64 n 5 x 5 + 28 3 ( 3 n 1 ) x 6 + 32 n 7 x 7 | x   =   1 = 2 ( 5 n + 1 ) + 64 n 5 + 28 3 ( 3 n 1 ) + 32 n 7 = 1938 35 n 22 3

A ( TM-TCNB ) = ( S x 3 Q 2 J D x 3 D y 3 ) ( TM - TCNB ; x , y ) | x   =   1 = 2 ( 209 n + 101 ) x 2 + 2304 n x 3 + 5103 ( 3 n 1 ) x 4 + 27648 n 5 x 5 | x   =   1 = 2 ( 209 n + 101 ) + 2304 n + 5103 ( 3 n 1 ) + 27648 n 5 = 117803 5 n 4901 .

FI ( TM-TCNB ) = D x ( TM-TCNB ; x ) | x   =   1 = ( 40 ( 3 n 1 ) x 10 + 64 ( n + 1 ) x 8 + 416 n x 13 + 504 ( 3 n 1 ) x 18 + 400 n x 25 ) x   =   1 = 40 ( 3 n 1 ) + 64 ( n + 1 ) + 416 n x + 504 ( 3 n 1 ) + 400 n = 2512 n 24

S ( TM-TCNB ) = D x ( TM-TCNB ; x ) | x   =   1 = ( 16 ( 3 n 1 ) x 4 + 48 n x ) | x   =   1 = 16 ( 3 n 1 ) + 48 n +   =   96 n 16 SO ( TM-TCNB ) = D x ( TM-TCNB ; x ) | x   =   1 = ( 4 10 ( 3 n 1 ) x 10 + 16 2 ( n + 1 ) x 2 2 + 32 13 n x 13 + 84 2 ( 3 n 1 ) x 3 2 + 80 n x 5 ) | x   =   1 = 4 10 ( 3 n 1 ) + 16 2 ( n + 1 ) + 32 13 n + 84 2 ( 3 n 1 ) + 80 n

3.3 Comparison

In this section, we present a numerical (Tables 3 and 4) and graphical (Figure 3) comparison of topological indices of M-polynomials, F-polynomial, sigma polynomial, and Sombor polynomial for n = 1, 2, 3, 4, …, 10 for TM-TCNB.

Table 3

Computation of topological invariants by the help of M-polynomial of TM-TCNB

[n] M 1 M 2 M 1 m RR ρ SSD A I H
[1] 704 976 19.556 0.0000 273.333 1270.059 208.828 48.038
[2] 1,560 2,814 41.556 0.0001 600 2808.555 417.657 103.409
[3] 2,416 3,392 64 0.0002 926.667 4347.052 626.485 158.780
[4] 3,272 4,600 85.556 0.0003 1253.333 5885.548 835.314 214.152
[5] 4,128 5,808 107.556 0.0003 1580 7424.045 1044.142 269.5238
[6] 4,984 7,016 129.556 0.0004 1906.667 8962.541 1252.971 324.895
[7] 5,840 8,224 151.556 0.0005 2233.333 10501.038 1461.800 380.266
[8] 6,696 9,432 173.556 0.0005 2560 12039.534 1670.628 435.638
[9] 7,552 10,640 195.556 0.0006 2886.667 13578.031 1879.457 491.009
[10] 8,408 11,848 217.556 0.0007 3213.333 15116.527 2088.285 546.380
Table 4

Computation of topological invariants by the help of F-polynomial, S-polynomial, and SO-polynomial of TM-TCNB

[n] F1 S SO
[1] 2,488 80 1299.326
[2] 5,000 176 2922.429
[3] 7,512 272 4545.532
[4] 10,024 368 6168.635
[5] 12,536 464 7791.738
[6] 15,048 560 9414.841
[7] 17,560 656 11037.944
[8] 20,072 752 12661.047
[9] 22,584 848 14284.1500
[10] 25,096 944 15907.252
Figure 3 
                  Comparison of topological invariants by applying polynomials for TM-TCNB at x = 1 and y = 1.
Figure 3

Comparison of topological invariants by applying polynomials for TM-TCNB at x = 1 and y = 1.

3.4 Cuboctahedral bimetallic structure (MOPs)

The number of vertices and edges of cuboctahedral bimetallic networks (MOPs) (Figure 4) are 196n and 240n, respectively. In cuboctahedral bimetallic networks (MOPs), there are four types of vertices: degrees 1, 2, 3, and 4, respectively. Table 5 shows the edge partition of cuboctahedral bimetallic networks (MOPs) depending on the degrees of end vertices of each edge.

Figure 4 
                  Clusters investigated a unit cell of cuboctahedral bimetallic networks using density functional theory methods: (a) formate, (b) benzoate, and (c) water solvated.
Figure 4

Clusters investigated a unit cell of cuboctahedral bimetallic networks using density functional theory methods: (a) formate, (b) benzoate, and (c) water solvated.

Table 5

Edge partition of MOPs based on degrees of end vertices of each edge

(ζ(a), ζ(b)) (1,4) (2,2) (2,3) (2,4) (3,3) (3,4)
Frequency 36n 16n 120n 42n 24n 16n
Set of edges E 1 E 2 E 3 E 4 E 5 E 6

3.5 Polynomials of cuboctahedral bimetallic networks (MOPs)

Let G be a molecular graph of MOPs. Then, using Table 5 in Eqs. 14, respectively, the M-, F-, S-, and SO-polynomials for MOPs are computed as follows:

M ( ( MOPs ) ; x , y ) =   δ p q m p q ( ( MOPs ) ) x p y q =   a b E 1 m 14 ( ( MOPs ) ) x 1 y 4 + a b E 2 m 22 ( ( MOPs ) ) x 2 y 2 + a b E 3 m 23 ( ( MOPs ) ) x 2 y 3 + a b E 4 m 24 ( ( MOPs ) ) x 2 y 4 + a b E 5 m 33 ( ( MOPs ) ) x 3 y 3 + a b E 6 m 34 ( ( MOPs ) ) x 3 y 4 = | E 1 | x y 4 + | E 2 | x 2 y 2 + | E 3 | x 2 y 3 + | E 4 | x 2 y 4 + | E 5 | x 3 y 3 + | E 6 | x 3 y 4 = 36 n x y 4 + 16 n x 2 y 2 + 120 n x 2 y 3 + 42 n x 2 y 4 + 24 n x 3 y 3 + 16 n x 3 y 4

FI ( ( MOPs ) ; x ) = a b E ( X ) x ( ( ζ a ) 2 + ( ζ b ) 2 ) = a b E 1 m 14 ( ( MOPs ) ) x 17 + a b E 2 m 22 ( ( MOPs ) ) x 8 x+ a b E 3 m 23 ( ( MOPs ) ) x 13 + a b E 4 m 24 ( ( MOPs ) ) x 20 + a b E 5 m 33 ( ( MOPs ) ) x 18 + a b E 6 m 34 ( ( MOPs ) ) x 25 = | E 1 | x 17 + | E 2 | x 8 + | E 3 | x 13 + | E 4 | x 20 + | E 5 | x 18 + | E 6 | x 25 = 36 n x 17 + 16 n x 8 + 120 n x 13 + 42 n x 20 + 24 n x 18 + 16 n x 25

S ( ( MOPs ) ; x ) = a b E ( X ) x ( ζ a ζ b ) 2 = a b E 1 m 14 ( ( MOPs ) ) x 9 + a b E 2 m 22 ( ( MOPs ) ) + a b E 3 m 23 ( ( MOPs ) ) x + a b E 4 m 24 ( ( MOPs ) ) x 4 + a b E 5 m 33 ( ( MOPs ) ) + a b E 6 m 34 ( ( MOPs ) ) x = | E 1 | x 9 + | E 2 | + | E 3 | x + | E 4 | x 4 + | E 5 | + | E 6 | x = 36 n x 9 + 16 n + 120 n x + 42 n x 4 + 24 n + 16 n x = 36 n x 9 + 42 n x 4 + 136 n x + 40 n

SO ( ( MOPs ) ; x ) = a b E ( X ) x ( ζ a ) 2 + ( ζ b ) 2 = a b E 1 m 14 ( ( MOPs ) ) x 17 + a b E 2 m 22 ( ( MOPs ) ) x 8 + a b E 3 m 23 ( ( MOPs ) ) x 13 + a b E 4 m 24 ( ( MOPs ) ) x 20 + a b E 5 m 33 ( ( MOPs ) ) x 18 + a b E 6 m 34 ( ( MOPs ) ) x 25

SO ( ( MOPs ) ; x ) = | E 1 | x 17 + | E 2 | x 2 2 + | E 3 | x 13 + | E 4 | x 2 5 + | E 5 | x 3 2 + | E 6 | x 5 = 36 n x 17 + 16 n x 2 2 + 120 n x 13 + 42 n x 2 5 + 24 n x 3 2 + 16 n x 5

Figure 5 shows the graphical presentation of M-polynomial, F-polynomial, S-polynomial, and SO-polynomial of transition cuboctahedral bimetallic systems (MOPs).

Figure 5 
                  (a) M-polynomial, (b) F-polynomial, (c) S-polynomial, and (d) SO-polynomial of transition cuboctahedral bimetallic networks (MOPs).
Figure 5

(a) M-polynomial, (b) F-polynomial, (c) S-polynomial, and (d) SO-polynomial of transition cuboctahedral bimetallic networks (MOPs).

3.6 Computation of topological invariants by applying polynomials for cuboctahedral bimetallic networks (MOPs)

Now, we calculate the topological invariants for cuboctahedral bimetallic networks (MOPs), known first, second, modified, and augmented Zagreb invariants, Randić invariants, SSD invariant, harmonic invariant, ISI invariant, F invariant, S invariant, and SO invariant. From Table 1, we acquire the results of M-polynomial as follows:

D x ( f ( x , y ) ) = x f ( x , y ) x = x ( ( 36 n ) y 4 + 2 ( 16 n ) x 1 y 2 + 2 ( 120 n ) x 1 y 3 + 2 ( 42 n ) x 1 y 4 + 3 ( 24 n ) x 2 y 3 + 3 ( 16 n ) x 2 y 4 ) = 36 n x y 4 + 32 n x 2 y 2 + 240 n x 2 y 3 + 84 n x 2 y 4 + 72 n x 3 y 3 + 48 n x 3 y 4

D y ( f ( x , y ) ) = y f ( x , y ) y = y ( 4 ( 36 n ) x y 3 + 2 ( 16 n ) x 1 y 2 + 3 ( 120 n ) x 2 y 2 + 4 ( 42 n ) x 2 y 3 + 3 ( 24 n ) x 3 y 2 + 4 ( 16 n ) x 3 y 3 ) = 144 n x y 4 + 32 n x 2 y 2 + 360 n x 2 y 3 + 168 n x 2 y 4 + 72 n x 3 y 3 + 64 n x 3 y 4

D x D y ( f ( x , y ) ) = x x D y ( f ( x , y ) ) = x ( ( 144 n ) x y 4 + 2 ( 32 n ) x 1 y 2 + 2 ( 360 n ) x 1 y 3 + 2 ( 168 n ) x 1 y 4 + 3 ( 72 ) x 2 y 3 + 3 ( 64 n ) x 2 y 4 ) = 144 n x y 4 + 64 n x 2 y 2 + 720 n x 2 y 3 + 336 n x 2 y 4 + 216 n x 3 y 3 + 192 n x 3 y 4

S x ( f ( x , y ) ) = 0 x f ( t , y ) t d t = ( 36 n ) x y 4 + 1 2 ( 32 n ) x 2 y 2 + 1 2 ( 240 n ) x 2 y 3 + 1 2 ( 84 n ) x 2 y 4 + 1 3 ( 72 ) x 3 y 3 + 1 3 ( 48 n ) x 3 y 4 = 36 n x y 4 + 16 n x 2 y 2 + 120 n x 2 y 3 + 42 n x 2 y 4 + 24 n x 3 y 3 + 16 n x 3 y 4

S y ( f ( x , y ) ) = 0 y f ( x , t ) t d t = 1 4 ( 144 n ) x y 4 + 1 2 ( 32 n ) x 2 y 2 + 1 3 ( 360 n ) x 2 y 3 + 1 4 ( 168 n ) x 2 y 4 + 1 3 ( 72 n ) x 3 y 3 + 1 4 ( 64 n ) x 3 y 4 = 36 n x y 4 + 16 n x 2 y 2 + 120 n x 2 y 3 + 42 n x 2 y 4 + 24 n x 3 y 3 + 16 n x 3 y 4

S x S y ( f ( x , y ) ) = ( 36 n ) x y 4 + 1 2 ( 16 n ) x 2 y 2 + 1 2 ( 120 n ) x 2 y 3 + 1 2 ( 42 n ) x 2 y 4 + 1 3 ( 24 n ) x 3 y 3 + 1 3 ( 16 n ) x 3 y 4 = 36 n x y 4 + 8 n x 2 y 2 + 60 n x 2 y 3 + 21 n x 2 y 4 + 8 n x 3 y 3 + 16 n 3 x 3 y 4 D x ρ D y ρ ( f ( x , y ) ) = 144 ( 4 ) ρ n x y 4 + 64 ( 4 ) ρ n x 2 y 2 + 720 ( 6 ) ρ n x 2 y 3 + 336 ( 8 ) ρ n x 2 y 4 + 216 ( 9 ) ρ n x 3 y 3 + 192 ( 12 ) ρ n x 3 y 4 S x ρ S y ρ ( f ( x , y ) = 9 ( 4 ) 1 ρ n x y 4 + ( 4 ) 2 ρ n x 2 y 2 + 20 ( 6 ) 1 ρ n x 2 y 3 + 42 ( 8 ) ρ n x 2 y 4 + 8 ( 3 ) 1 2 ρ n x 3 y 3 + 16 ( 12 ) ρ n x 3 y 4

S y D x ( f ( x , y ) ) = 1 4 ( 36 n ) x y 4 + 1 2 ( 32 n ) x 2 y 2 + 1 3 ( 240 n ) x 2 y 3 + 1 4 ( 84 n ) x 2 y 4 + 1 3 ( 72 n ) x 3 y 3 + 1 4 ( 48 n ) x 3 y 4 = 9 n x y 4 + 16 n x 2 y 2 + 80 n x 2 y 3 + 21 n x 2 y 4 + 24 n x 3 y 3 + 12 n x 3 y 4 ,

S x D y ( f ( x , y ) ) = ( 144 n ) x y 4 + 1 2 ( 32 n ) x 2 y 2 + 1 2 ( 360 n ) x 2 y 3 + 1 2 ( 168 n ) x 2 y 4 + 1 3 ( 72 n ) x 3 y 3 + 1 3 ( 64 n ) x 3 y 4 = 144 n x y 4 + 16 n x 2 y 2 + 180 n x 2 y 3 + 84 n x 2 y 4 + 24 n x 3 y 3 + 64 n 3 x 3 y 4 J ( f ( x , y ) ) = f ( x , x )   =   16 n x 4 + 156 n x 5 + 66 n x 6 + 16 n x 7

S x J ( f ( x , y ) ) = 1 4 ( 16 n ) x 4 + 1 5 ( 156 n ) x 5 + 1 6 ( 66 n ) x 6 + 1 7 ( 16 n ) x 7 = 4 n x 4 + 156 n 5 x 5 + 11 n x 6 + 16 7 n x 7

2 S x J ( f ( x , y ) ) = 8 n x 4 + 312 n 5 x 5 + 22 n x 6 + 32 7 n x 7 J D x D y ( f ( x , y ) ) = 64 n x 4 + 864 n x 5 + 552 n x 6 + 192 n x 7

S x J D x D y ( f ( x , y ) ) =   1 4 ( 64 n ) x 4 + 1 5 ( 864 n ) x 5 + 1 6 ( 552 n ) x 6 + 1 7 ( 192 n ) x 7 =   16 n x 4 + 864 5 n x 5 + 92 n x 6 + 192 7 n x 7 ,

D y 3 f ( x , y ) =   4 2 ( 144 n ) x 1 y 4 + 2 2 ( 32 n ) x 2 y 2 + 3 2 ( 360 n ) x 2 y 3 + 4 2 ( 168 n ) x 2 y 4 + 3 2 ( 72 n ) x 3 y 3 + 4 2 ( 64 n ) x 3 y 4 = 2304 n x 1 y 4 + 128 n x 2 y 2 + 3240 n x 2 y 3 + 2688 n x 2 y 4 + 648 n x 3 y 3 + 1024 n x 3 y 4

D x 3 D y 3 ( f ( x , y ) ) = 2304 n x y 4 + 2 3 ( 128 n ) x 2 y 2 + 2 3 ( 3240 n ) x 2 y 3 + 2 3 ( 2688 n ) x 2 y 4 + 3 3 ( 648 n ) x 3 y 3 + 3 3 ( 1024 n ) x 3 y 4 = 2304 n x y 4 + 1024 n x 2 y 2 + 25920 n x 2 y 3 + 21504 n x 2 y 4 + 17496 n x 3 y 3 + 27648 n x 3 y 4

J D x 3 D y 3 ( f ( x , y ) ) = 1024 n x 4 + 28224 n x 5 + 39000 n x 6 + 27648 n x 7 Q 2 J D x 3 D y 3 ( f ( x , y ) ) = 1024 n x 2 + 28224 n x 3 + 39000 n x 4 + 27648 n x 5 S x 3 Q 2 J D x 3 D y 3 ( f ( x , y ) ) = 1 2 3 ( 1024 n ) x 2 + 1 3 3 ( 28224 n ) x 3 + 1 4 3 ( 39000 n ) x 4 + 1 5 3 ( 27648 n ) x 5 = 128 n x 2 + 3136 3 n x 3 + 4875 8 n x 4 + 27648 125 n x 5

Now, the second condition, i.e., x = y = 1 on above-calculated expressions is applied to get the exact formulas of all topological indices.

M 1 ( MOPs ) = ( D x + D y ) ( MOPs ; x , y ) | x   =   y   =   1 = ( 180 n x y 4 + 64 n x 2 y 2 + 600 n x 2 y 3 + 252 n x 2 y 4 + 144 n x 3 y 3 + 112 n x 3 y 4 ) | x   =   y   =   1 = 1352 n

M 2 ( MOPs ) = ( D x D y ) ( MOPs ; x , y ) | x   =   y   =   1 = ( 144 n x y 4 + 64 n x 2 y 2 + 720 n x 2 y 3 + 336 n x 2 y 4 + 216 n x 3 y 3 + 192 n x 3 y 4 ) | x   =   y   =   1 = 1672 n

M 1 m ( MOPs ) = ( S x S y ) ( MOPs ; x , y ) | x   =   y   =   1 = 36 n x y 4 + 8 n x 2 y 2 + 60 n x 2 y 3 + 21 n x 2 y 4 + 8 n x 3 y 3 + 16 3 n x 3 y 4 | x   =   y   =   1 = 415 n 3

R R ρ ( MOPs ) = ( S x ρ S y ρ ) ( MOPs ; x , y ) | x   =   y   =   1 = ( 9 ( 4 ) 1 ρ n x y 4 + ( 4 ) 2 ρ n x 2 y 2 + 20 ( 6 ) 1 ρ n x 2 y 3 + 42 ( 8 ) ρ n x 2 y 4 + 8 ( 3 ) 1 2 ρ n x 3 y 3 + 16 ( 12 ) ρ n x 3 y 4 ) | x   =   y   =   1 = 9 ( 4 ) 1 ρ n + ( 4 ) 2 ρ n + 20 ( 6 ) 1 ρ n + 42 ( 8 ) ρ n + 8 ( 3 ) 1 2 ρ n + 16 ( 12 ) ρ n

SSD ( MOPs ) = ( S x D y + S y D x ) ( MOPs ; x , y ) | x   =   y   =   1 = 153 n x y 4 + 32 n x 2 y 2 + 260 n x 2 y 3 + 105 n x 2 y 4 + 48 n x 3 y 3 + 100 3 n x 3 y 4 | x   =   y   =   1 = 1894 n 3

I ( MOPs ) = ( S x J D x D y ) ( MOPs ; x , y ) | x   =   1 = 16 n x 4 + 864 5 n x 5 + 92 n x 6 + 192 7 n x 7 | x   =   y   =   1 = 10788 35 n

H ( MOPs ) = ( 2 S x J ) ( MOPs ; x , y ) | x   =   1 = 8 n x 4 + 312 n 5 x 5 + 22 n x 6 + 32 7 n x 7 | x   =   1 = 3394 35 n

A ( MOPs ) = ( S x 3 Q 2 J D x 3 D y 3 ) ( MOPs ; x , y ) | x   =   1 = 128 n x 2 + 3136 3 n x 3 + 4875 8 n x 4 + 27648 125 n x 5 | x   =   1 = 6011677 3000 n

F I ( MOPs ) = ( D x ) ( MOPs ; x , y ) | x   =   1 = ( 612 n x 17 + 128 n x 8 + 1560 n x 13 + 840 n x 20 + 432 n x 18 + 400 n x 25 ) | x   =   1 = 3972 n

S ( MOPs ) = ( D x ) ( MOPs ; x , y ) | x   =   1 = ( D x ) ( MOPs ; x , y ) | x   =   1 = ( 324 n x 9 + 120 n x + 168 n x 4 + 16 n x ) | x   =   1 = 628 n

SO ( MOPs ) = ( D x ) ( MOPs ; x , y ) | x   =   1 = ( 36 17 n x 17 + 32 2 n x 2 2 + 120 13 n x 13 + 84 5 n x 2 5 + 72 2 n x 3 2 + 80 n x 5 ) | x   =   1 = 36 17 n + 32 2 n + 120 13 n + 84 5 n + 72 2 n + 80 n

In Figure 6 and Tables 6 and 7, a comparison of topological invariants by applying polynomials for cuboctahedral bimetallic networks (MOPs) at x = 1 and y = 1 is presented. We can analyze that all topological invariants are increasing as the values of n increases.

Figure 6 
                  Comparision of topological invariants by applying polynomials for cuboctahedral bimetallic networks (MOPs) at x = 1 and y = 1.
Figure 6

Comparision of topological invariants by applying polynomials for cuboctahedral bimetallic networks (MOPs) at x = 1 and y = 1.

Table 6

Comparison of topological invariants by applying M-polynomial for cuboctahedral bimetallic networks (MOPs) at x = 1 and y = 1

[n] M 1 M 2 M 1 m RR ρ SSD A I H
[1] 1,352 1,672 138.333 0.0000 371.333 2003.892 308.228 128.971
[2] 2,704 3,344 276.667 0.0001 742.666 4007.784 616.4571 257.942
[3] 4,056 5,016 415 0.0002 1114 6011.677 924.685 386.914
[4] 5,408 6,688 553.333 0.0002 1485.333 8015.569 1232.914 515.885
[5] 6,760 8,360 691.666 0.0003 1856.666 10019.461 1541.142 644.8571
[6] 8,112 10,032 830 0.0003 2228 12023.354 1849.371 773.828
[7] 9,464 11,704 968.333 0.0004 2599.333 14027.246 2157.60 902.8
[8] 10,816 13,376 1106.667 0.0004 2970.666 16031.138 2465.828 1031.771
[9] 12,168 15,048 1245 0.0005 3342 18035.031 2774.0571 1160.742
[10] 13,520 16,720 1383.333 0.0005 3713.333 20038.923 3082.285 1289.714
Table 7

Comparison of topological invariants by applying F-, S-, and SO-polynomials for cuboctahedral bimetallic networks (MOPs) at x = 1

[n] FI S SO
[1] 3,972 628 996.005
[2] 7,944 1256 1992.011
[3] 11,916 1884 2988.017
[4] 15,888 2512 3984.023
[5] 19,860 3140 4980.029
[6] 23,832 3768 5976.035
[7] 27,804 4396 6972.041
[8] 31,776 5024 7968.047
[9] 35,748 5652 8964.052
[10] 39,720 6280 9960.058

4 Conclusion

In this article, we give M-, F-, S-, and SO-polynomials of the two most appealing networks metal-organic networks (TM-TCNB) and cuboctahedral bimetallic networks (MOPs). We also calculated the formulae for various degree-dependent topological invariants of critical importance, such as the first, second, modified, and augmented Zagreb invariants, general and inverse Randić invariants, SSD, harmonic invariants, ISI, F invariant, sigma invariant, and Sombor invariant of metal-organic networks (TM-TCNB) and cuboctahedral bimetallic (MOPs) by using topological polynomials derived in the previous topic. The Zagreb invariants of metal-organic networks (TM-TCNB) and cuboctahedral bimetallic networks (MOPs) furnish total π-electron energy in increasing form for higher quantities of n. One can analyze that the strain energy of metal-organic networks (TM-TCNB) and cuboctahedral bimetallic networks (MOPs) is high as the values of n increase. The physical properties, chemical reactivity, and biological activities of these structures can all be better understood using topological invariants.

Acknowledgment

The authors are very grateful to the referees for their constructive suggestions and useful comments, which improved this work very much.

  1. Funding information: This research is supported by the UPAR Grant of United Arab Emirates University (UAEU), Al Ain, United Arab Emirates via Grant No. G00002590 and UPAR Grant of UAEU via Grant No. G00003271.

  2. Author contributions: Farhana Yasmeen: writing – original draft, writing – review and editing, methodology, formal analysis; Muhammad Imran: writing – original draft, writing – review and editing, visualization, project administration, funding acquisition; Shehnaz Akhter: writing – original draft, investigation, and resources; Yasir Ali and Kashif Ali: writing – original draft, data collection.

  3. Conflict of interest: The corresponding author (Muhammad Imran) is a Guest Editor of the Main Group Metal Chemistry’s Special Issue “Theoretical and computational aspects of graph-theoretic methods in modern-day chemistry” in which this article is published.

  4. Data availability statement: All data required to prove the results is already included in the manuscript. So no additional data are associated with this article.

References

Ajmal M., Nazeer W., Munir M., Kang S.M., Kwun Y.C., Some algebraic polynomials and topological indices of generalized prism and toroidal polyhex networks. Symmetry, 2017a, 9, 1–12.10.3390/sym9010005Search in Google Scholar

Ajmal M., Nazeer W., Munir M., Kang S.M., Kwun Y.C., The M-Polynomial and topological indices of generalized prism networks. Int. J. Math. Anal., 2017b, 11, 293–303.10.12988/ijma.2017.7118Search in Google Scholar

Akhter S., Imran M., Farahan M.R., Javaid I., On topological properties of hexagonal and silicate networks. Hac. J. Math. Stat., 2017, 48(3), 1–13.10.15672/HJMS.2017.541Search in Google Scholar

Akhter S., Imran M., Gao W., Farahani M.R., On topological indices of honeycomb networks and graphene networks. Hac. J. Math. Stat., 2018, 47(1), 19–35.10.15672/HJMS.2017.464Search in Google Scholar

Akhter S., Imran M., Iqbal Z., Mostar indices of SiO2 nanostructures and melem chain nanostructures. Int. J. Quantum Chem., 2020, 121(5), e26520.10.1002/qua.26520Search in Google Scholar

Akhter S., Imran M., On molecular topological properties of benzenoid structures. Can. J. Chem., 2016, 94(8), 687–698.10.1139/cjc-2016-0032Search in Google Scholar

Akhter S., Imran M., Raza Z., On the general sum-connectivity index and general Randić index of cacti. J. Inequal. Appl., 2016, 2016, 300–309.10.1186/s13660-016-1250-6Search in Google Scholar

Akhter S., Iqbal Z., Aslam A., Gao W., Mostar index of graph operations. Int. J. Quantum Chem., 2021, 121(15), e26674.10.1002/qua.26674Search in Google Scholar

Ali A., Bhatti A.A., Raza Z., Further inequalities between vertex-degree-based topological indices. Int. J. Appl. Comput. Math., 2017, 3(3), 1921–1930.10.1007/s40819-016-0213-4Search in Google Scholar

Ali A., Raza Z., Bhatti A.A., Bond incident degree (BID) indices for some nanostructures. Optoelectronics Adv. Mater-Rapid Commun., 2016, 10(1–2), 108–112.Search in Google Scholar

Amic D., Beslo D., Lucic B., Nikolic S., Trinajstić N., The vertex-connectivity index revisited. J. Chem. Inf. Comput. Sci., 1998, 38, 819–822.10.1021/ci980039bSearch in Google Scholar

Baig A.Q., Imran M., Khalid W., Naeem M., Molecular description of carbon graphite and crystal cubic carbon structures. Can. J. Chem., 2017, 95, 674–686.10.1139/cjc-2017-0083Search in Google Scholar

Bollobás B., Erdos P., Graphs of extremal weights. Ars Comb., 1998, 50, 225–233.10.1016/S0012-365X(98)00320-3Search in Google Scholar

Brückler F.M., Došlić T., Graovac A., Gutman I., On a class of distance-based molecular structure descriptors. Chem. Phys. Lett., 2011, 503, 336–338.10.1016/j.cplett.2011.01.033Search in Google Scholar

Deutsch E., Klavžar S., M-Polynomial and degree-based topological indices. Iran. J. Math. Chem., 2015, 6, 93–102.Search in Google Scholar

Došlić T., Planar polycyclic graphs and their Tutte polynomials. J. Math. Chem., 2013, 51, 1599–1607.10.1007/s10910-013-0167-2Search in Google Scholar

Farrell E.J., An introduction to matching polynomials. J. Combin. Theory Ser. B, 1979, 27, 75–86.10.1016/0095-8956(79)90070-4Search in Google Scholar

Furtula B., Graovac A., Vukicevic D., Augmented Zagreb index. J. Math. Chem., 2010, 48, 370–380.10.1007/s10910-010-9677-3Search in Google Scholar

Furtula B., Gutman I., A forgotten topological index. J. Math. Chem., 2015, 53(4), 1184–1190.10.1007/s10910-015-0480-zSearch in Google Scholar

Gao W., Akhter S., Iqbal Z., Qasim M., Aslam A., The topological aspects of phthalocyanines and porphyrins dendrimers. IEEE Access, 2020, 8, 168631–168649.10.1109/ACCESS.2020.3023658Search in Google Scholar

Gao W., Iqbal Z., Akhter S., Ishaq M., Aslam A., On irregularity descriptors of derived graphs. AIMS Math., 2019, 5(5), 4085–4107.10.3934/math.2020262Search in Google Scholar

Grigory B.S., Alexander P.K., The method of colored graphs for simplifying expressions with indices. Program. Computer Software, 2021, 47(1), 25–28.10.1134/S0361768821010102Search in Google Scholar

Gutman I., Geometric approach to degree-based topological indices: Sombor indices. MATCH Commun. Math. Comput. Chem., 2021, 86(1), 11–16.Search in Google Scholar

Gutman I., Trinastić N., Graph theory and molecular orbitals. Total π electron energy of alternant hydrocarbons. Chem. Phys. Lett., 1972, 17, 535–538.10.1016/0009-2614(72)85099-1Search in Google Scholar

Hassani F., Iranmanesh A., Mirzaie S., Schultz and modified Schultz polynomials of C100 fullerene. Match Commun. Math. Comput. Chem., 2013, 69, 87–92.Search in Google Scholar

Hosoya H., On some counting polynomials in chemistry. Discrete Appl. Math., 1988, 19, 239–257.10.1016/0166-218X(88)90017-0Search in Google Scholar

Imran M., Akhter S., Iqbal Z., Edge Mostar index of chemical structures and nanostructures using graph operations. Int. J. Quantum Chem., 2020a, 120(15), e26259.10.1002/qua.26259Search in Google Scholar

Imran M., Akhter S., Iqbal Z. On the eccentric connectivity polynomial of F-sum of connected graphs. Complexity, 2020b, 2020, 5061682.10.1155/2020/5061682Search in Google Scholar

Imran M., Ali M.A., Ahmad S., Siddiqui M.K., Baig A.Q., Topological characterization of the symmetrical structure of Bismuth Tri-Iodide. Symmetry, 2018a, 10(6), 201–209.10.3390/sym10060201Search in Google Scholar

Imran M., Siddiqui M.K., Naeem M., Iqbal M.A., On topological properties of symmetric chemicaln structures. Symmetry, 2018b, 10, 173–183.10.3390/sym10050173Search in Google Scholar

Munir M., Nazeer W., Kang S.M., Qureshi M.I., Nizami A.R., Kwun Y.C., Some invariants of Jahangir graphs. Symmetry, 2017, 9, 1–15.10.3390/sym9010017Search in Google Scholar

Munir M., Nazeer W., Rafique S., Nizami A.R., Kang S.M., Some computational aspects of triangular boron nanotubes. Symmetry, 2016, 9, 1–6.10.3390/sym9010006Search in Google Scholar

Randić M., On characterization of molecular branching. J. Am. Chem. Soc., 1975, 97, 6609–6615.10.1021/ja00856a001Search in Google Scholar

Yang H., Imran M., Akhter S., Iqbal Z., Siddiqui M.K., On distance-based topological descriptors of subdivision vertex-edge join of three graphs. IEEE Access, 2019, 7, 143381–143391.10.1109/ACCESS.2019.2944860Search in Google Scholar

Yasmeen F., Akhter S., Ali K., Rizvi S.T.R., Edge Mostar indices of cacti graph with fixed cycles. Frontiers in Chem., 2021, 9, 440.10.3389/fchem.2021.693885Search in Google Scholar PubMed PubMed Central

Received: 2022-02-16
Revised: 2022-07-21
Accepted: 2022-06-02
Published Online: 2022-08-30

© 2022 Farhana Yasmeen et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Embedded three spinel ferrite nanoparticles in PES-based nano filtration membranes with enhanced separation properties
  2. Research Articles
  3. Syntheses and crystal structures of ethyltin complexes with ferrocenecarboxylic acid
  4. Ultra-fast and effective ultrasonic synthesis of potassium borate: Santite
  5. Synthesis and structural characterization of new ladder-like organostannoxanes derived from carboxylic acid derivatives: [C5H4N(p-CO2)]2[Bu2Sn]4(μ3-O)2(μ2-OH)2, [Ph2CHCO2]4[Bu2Sn]4(μ3-O)2, and [(p-NH2)-C6H4-CO2]2[Bu2Sn]4(μ3-O)2(μ2-OH)2
  6. HPA-ZSM-5 nanocomposite as high-performance catalyst for the synthesis of indenopyrazolones
  7. Conjugation of tetracycline and penicillin with Sb(v) and Ag(i) against breast cancer cells
  8. Simple preparation and investigation of magnetic nanocomposites: Electrodeposition of polymeric aniline-barium ferrite and aniline-strontium ferrite thin films
  9. Effect of substrate temperature on structural, optical, and photoelectrochemical properties of Tl2S thin films fabricated using AACVD technique
  10. Core–shell structured magnetic MCM-41-type mesoporous silica-supported Cu/Fe: A novel recyclable nanocatalyst for Ullmann-type homocoupling reactions
  11. Synthesis and structural characterization of a novel lead coordination polymer: [Pb(L)(1,3-bdc)]·2H2O
  12. Comparative toxic effect of bulk zinc oxide (ZnO) and ZnO nanoparticles on human red blood cells
  13. In silico ADMET, molecular docking study, and nano Sb2O3-catalyzed microwave-mediated synthesis of new α-aminophosphonates as potential anti-diabetic agents
  14. Synthesis, structure, and cytotoxicity of some triorganotin(iv) complexes of 3-aminobenzoic acid-based Schiff bases
  15. Rapid Communications
  16. Synthesis and crystal structure of one new cadmium coordination polymer constructed by phenanthroline derivate and 1,4-naphthalenedicarboxylic acid
  17. A new cadmium(ii) coordination polymer with 1,4-cyclohexanedicarboxylate acid and phenanthroline derivate: Synthesis and crystal structure
  18. Synthesis and structural characterization of a novel lead dinuclear complex: [Pb(L)(I)(sba)0.5]2
  19. Special Issue: Theoretical and computational aspects of graph-theoretic methods in modern-day chemistry (Guest Editors: Muhammad Imran and Muhammad Javaid)
  20. Computation of edge- and vertex-degree-based topological indices for tetrahedral sheets of clay minerals
  21. Structures devised by the generalizations of two graph operations and their topological descriptors
  22. On topological indices of zinc-based metal organic frameworks
  23. On computation of the reduced reverse degree and neighbourhood degree sum-based topological indices for metal-organic frameworks
  24. An estimation of HOMO–LUMO gap for a class of molecular graphs
  25. On k-regular edge connectivity of chemical graphs
  26. On arithmetic–geometric eigenvalues of graphs
  27. Mostar index of graphs associated to groups
  28. On topological polynomials and indices for metal-organic and cuboctahedral bimetallic networks
  29. Finite vertex-based resolvability of supramolecular chain in dialkyltin
  30. Expressions for Mostar and weighted Mostar invariants in a chemical structure
Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/mgmc-2022-0012/html
Scroll to top button