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Abstract: A molecular graph consists of bonds and atoms,
where atoms are present as vertices and bonds are pre-
sent as edges. We can look at topological invariants
and topological polynomials that furnish bioactivity and
physio-chemical features for such molecular graphs.
These topological invariants, which are usually known
as graph invariants, are numerical quantities that relate
to the topology of a molecular graph. Let m,4(X) be the
number of edges in X such that (%, {b) = (p, q), where {*
(or (b) present the degree of a (or b). The M-polynomial
for X can be determined with the help of relation M(X;x, y) =
Zpg qmpq(X )xPy4. In this study, we calculate the M-polyno-
mial, forgotten polynomial, sigma polynomial and Sombor
polynomial, and different topological invariants of critical
importance, referred to as first, second, modified and aug-
mented Zagreb, inverse and general Randi¢, harmonic, sym-
metric division; forgotten and inverse invariants of chemical
structures namely metal-organic networks (transition metal-
tetra cyano benzene organic network) and cuboctahedral
bimetallic networks (MOPs) are retrieved using a generic
topological polynomial approach. We also draw the two-
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dimensional graphical representation of outcomes that
express the relationship between topological indices and
polynomial structural parameters.
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1 Introduction

The topological invariants, which are usually known as
graph invariants, are numerical quantities that relate to
the topology of a molecular graph. Topological invariants
are used in graph theory to investigate the structural
possession of graphs. These compounds are used in a
wide range of fields including chemistry, drug discovery,
pharmaceutical, and discrete dynamical systems. Graph
theory is an important part of mathematics that allows
us to explore the features of any structure with ease.
Chemical graph theory is crucial in the modeling and
designing of any chemical structure. Mathematical chem-
istry appeals to scientists since it studies and works on a
large number of topological invariants of a chemical com-
pound in order to anticipate its physicochemical proper-
ties (Briickler et al., 2011). Molecular compounds have a
wide range of applications in business, industrial, med-
icinal chemistry, commercial, everyday life, and research
(Imran et al., 2018a,b).

Let X be a simple and finite graph with V(X) be a
vertex set and E(X) be an edge set. A graph X = (V(X), E(X))
is connected if each pair of its vertices has a path con-
necting them. A network is simply defined as a connected
graph with numerous edges and no loops. The degree of a
given vertex a is the number of edges in X which are
connecting directly to the vertex, and it is represented
as (. When calculating topological invariants, one should
have a solid understanding of the fundamentals of graph
theory. The topological invariants are calculated by figuring
out the single polynomial. Several graph polynomials
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have been established in the literature and have played a
major role in mathematical chemistry, including matching
(Farrell, 1979), Schultz (Hassani et al., 2013), and Tutte
(Dosli¢, 2013) polynomials, with M-polynomials and
Hosoya polynomials (Hosoya, 1988) being the most
notable. The Hosoya polynomial, also known as the
Wiener polynomial, is used to establish the distance-
based topological invariants in chemistry. Similarly, in
defining degree-based topological invariants of graphs, the
M-polynomial (Ajmal et al., 2017a,b) is key. According to
Deutsch and Klavzar (2015), the M-polynomial for X is
defined as follows:

M&Xx,y) = ) mpg(X)xby (1)

d<p<qg<A
where 6§ = min{{*: Vae V(X)}, A = max{{*: Va € V(X)}, and
mp4(X) be the number of edges ab € E(X) as ((“,{b) =(p, Q).
The forgotten polynomial for X is written as follows:
FX)= Y x(@D*+E" @)
abeE(X)

The sigma polynomial for X is characterized as:

SXx) =y x@=¢"’ 3)
abeE(X)

The Sombor polynomial for X is defined as:

SOX;x) = Y xVEOHE! )
abeE(X)

In most cases, multiple equations can be used to
compute topological invariants for certain classes. We
can obtain several vertex-based invariants with the help
of M-polynomial by using only the specific differential,
integral, or both operators on corresponding polyno-
mials. The authors were able to construct closed forms
of degree-related invariants for triangular boron nano-
tubes (Munir et al., 2016) and the Jahangir graph (Munir
et al., 2017) using M-polynomial. Experiments demonstrate
that no one topological invariant is powerful enough to
deliberate all of a compound’s physiochemical possessions,
although they can do so to some extent when used in com-
bination. Randi¢ (1975) introduced the first degree-based
topological invariant, which is known as the Randi¢
invariant, 1975, and in some literature, it was also written
as molecular connectivity invariant (Amic et al., 1998).
Bollobas and Erdos (1998) developed a general form of
the Randic¢ invariant, which is presented as follows:

1
R,(X) = —
4 ab;(x) ((a(b)p (5)

where p € R. Chemists and mathematicians investigated
this invariant extensively; after that, they concluded that
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the Randi¢ invariant has a correlation in the Kovats con-
stants of the molecules and the calculations of the boiling
point. The inverse Randi¢ RR,(X) invariant is stated as
follows:

RR,(X)= Y (%P ©)

abeE(X)
where p € R. The Randi¢ invariant’s compatibility with
alkane physicochemical properties is remarkable. Several
remarkable applications of the Randi¢ invariant (Randié,
1975) are discovered. The first M; and the second M, Zagreb
invariants were presented by Gutman and Trinasti¢ (1972):

M= Y €= Y @+ @

aeV(x) abeE(X)

MX)= Yy %P (8)

abeE(X)
For a simple graph X, the modified Zagreb invariant can
be introduced in the study by Baig et al. (2017) as follows:

1

M3'X) = Z W 9)

abeE(X)

The symmetric division SDD(X) is a most effective

and good predictor for the computation of the total sur-

face area of polychlorobiphenyl and is investigated for
simple and connected graphs as:

min({¢ {?)
max({?, ¢b)

SDD(X) = )
abeE(X)

max({% {?)
! min({4, (b)] (10)

Another generalization of the Randi¢ invariant is the
harmonic invariant and that is introduced as follows:

HX) = Y —2

~a . b 11)
abeE(X) ¢a+ P

The inverse sum indeg (or ISI) invariant is a reliable
and most important predictor for the computation of the
surface area of octane isomer, and its extremal graphs
can be found by using mathematical chemistry. The
inverse sum indeg ISI(X) invariant is specified as follows:

ISIX) = ) {eg?

b
abeE(X) (“+¢

(12)

The augmented Zagreb invariant of X was established
by Furtula et al. (2010), and it is defined as follows:

arb 3
aw- 3 (55
abeEeo\§ + ¢V = 2

Furtula and Gutman (2015) proposed the forgotten
invariant (also known as F-invariant) and is written as
follows:

(13)
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Table 1: Derivation of some degree-related topological invariants

from polynomials

Topological invariant

Formulae based on
polynomials

First Zagreb invariant M;(X)
Second Zagreb invariant M,(X)
Modified second Zagreb
invariant M;"(X)

Randi¢ invariant R,(X).

Inverse Randic invariant RR,(X)
Harmonic invariant H(X)
Inverse sum indeg invariant
1SI1(X)

Augmented Zagreb invariant
AX)

Forgotten invariant FI(X)
Sigma invariant S(X)

Sombor invariant SO(X)

(Dx+Dy)M(X; X, Y) |x:y:1
(Dny)M(X: X, y)lx:y:‘l
(SxSyYMX; X, Y)lx=y=1

(DL DLIMX; X, ¥)lxoy-1
(sxp syp)M(X; X, ¥) |x:y:1
25 JM(X; X, ¥)lx=a
SDDy MG X, Y)lx=a

($:2Q DD IM; X, Y)lxn
DiF(X; X)1x=1

DXS(X; X)lx:l
DXSO(Xr X) |x:l

FIX) = > (9 +

abeE(X)

(14)

The sigma invariant (Grigory and Alexander, 2021) is

defined as follows:

S(X) = Z (G (b)z (15)

abeE(X)

Gutman (2021) recently developed the concept of
Sombor invariant, which is defined as follows:

sox)= Y

abeE(X)

(€9 + (¢P)y? (16)

We refer to the concerned readers some indices-

related articles such as those of Ajmal et al. (2017a,b),
Akhter and Imran (2016), Akhter et al. (2016, 2017, 2018,
2020, 2021), Ali et al. (2016, 2017), Gao et al. (2019, 2020),
Imran et al. (2020a,b), Yang et al. (2019), and Yasmeen et al.

(2021). In Table 1, we give the relation of polynomials and the

degree-related topological invariants, where D, = X%,

X X X
D, =y, s = [[[Dar, s, = [ %0, J(fix, y) -
fix, x), and Q,(fix, y)) = ¥* fix, y).

2 Main results

The novel planar metal-organic networks (transition metal-
tetra cyano benzene organic network [TM-TCNB]) and
cuboctahedral bimetallic networks (MOPs) are now dis-
cussed in terms of their degree-based topological features.
Interestingly, the metal-organic networks (TM-TCNB) and
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cuboctahedral bimetallic (MOPs) systems are metallic
in any case in one turn heading and show long-run
ferromagnetic coupling on the off chance that for attractive
structures, which speak to ideal candidates and an intri-
guing possibility of uncommon applications in spintronics.

In this article, we calculate the M-, F-, sigma, and
Sombor polynomials for these metal-organic networks
(TM-TCNB) and cuboctahedral bimetallic networks (MOPs),
and then with the help of these polynomials, we compute
first, second, modified, and augmented Zagreb invariants,
general and inverse Randi¢, symmetric division, harmonic,
inverse sum indeg, forgotten invariants, sigma, and Sombor
invariants of TM-TCNB and MOPs. In the computation of
above polynomials and invariants, we use some techniques
from combinatorial and analytic computations, also vertex
and edge partition, graph theoretical tools, counting of
vertex degrees and sum of degrees of neighboring vertices,
and also, we use the MATLAB for plotting our results.

3 Molecular structure of TM-TCNB

The attractive frameworks of TM-TCNB have a fragmen-
tary absolute attractive second, so the entire arrangement
of TM-TCNB is metallic or half-metallic (metallic a soli-
tary way of turn and protecting in the other heading of
the turn). The neighborhood attractive snapshots of the
TM (TM = Ti, V, Cr, and Co) in TM-TCNB structures are
diminished by turn electrons inverse to the neighborhood
turn which are found on the natural ligands and which
encompass the focal molecule of TM. The materials of
Fe-TCNB, Co-TCNB, Ni-TCNB, and Zn-TCNB are comple-
tely metallic. Be that as it may, the metal-natural systems
of Ti-TCNB, VTCNB, Cr-TCNB, and Mn-TCNB are half-
metallic since they speak to a hole in a solitary turn
bearing (Figure 1). Additionally, the TM-TCNB mono-
layers are attractive with TM = Ti, V, Cr, and Co.
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Figure 1: Structures of (a) 2DTM-Pc and the TM-TCNB, (b) metal-
organic networks. The TM, N, C, and H atoms are highlighted in
cyan, blue, yellow, and red, respectively.
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Conversely, Ni-TCNB and Zn-TCNB are non-attractive.
For the entire arrangement of TM-TCNB (with the excep-
tion of TM = Ni and Zn), there is a fragmented screening
impact (lessening of the attractive second), and the
nearby attractive snapshot of the molecule (Ti, V, Cr,
and Co) is somewhat screened by turn captivated electrons
on the natural ligands encompassing TM on account of
TM-TCNB. The physical wonder of screening is thoroughly
missing in TM-Pc.

Let TM-TCNB be the chemical graph with n unit cells
in the plane (Figure 1).

The number of vertices and edges of TM-TCNB are
26n-16 and 152n-24, respectively. Since there are four
types of vertices in TM-TCNB namely the vertices of
degrees 1, 2, 3, 4. The edge partition of TM-TCNB based
on degrees of end vertices of each edge is depicted in
Table 2.

3.1 Polynomials of TM-TCNB

Let X be a molecular graph of TM-TCNB. Then, by using
Table 2 in Egs. 1-4, the M-polynomial, F-polynomial,
S-polynomial, and SO-polynomial for TM-TCNB are com-
puted as follows:

M((TM-TCNB);x, )

6<p<g<A

abeE;
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Table 2: Edge partition based on degrees of end vertices of
each edge

(§(a), §(b)) (2,2) (23) B3 (3,4)

Frequency 12n - 4 8n+8 32n 84n - 28 16n
Set of edges  E; E, Es E, Es

13)

S((TM-TCNB);x) Z x4

abeE(X)

> my(TM-TCNB)x*

abeE;

+ ) my(TM-TCNB)
abeE,

+ Y my(TM-TCNB)x
abeE;

+ ) m33(TM-TCNB)
abeE,

+ Y ms(TM-TCNB)x

abeEs

S((TM-TCNB);x)

= |Ealx* + |Eg| + |E3|x + |Eq| + |Es|x
4(3n - Dx* + 8(n + 1) + 32nx + 28(3n - 1) + 16nx
4(3n — Dx* + 48nx + 4(23n - 5)

Y my(TM-TCNB)xPy4

> my(TM-TCNB)xy? + ) my(TM-TCNB)x?y?

abeE,

+ ) myu(TM-TCNB)x%> + )’ my(TM-TCNB)x?y?

abeE;

abeE,

+ ) my(TM-TCNB)xX’y*

abeE;

F((TM-TCNB);x) PR R R

abeE(X)

abeF;

|Exxy? + |Exlx?y? + |Es|x?y? + |E4|Py? + |Es|xy*
4(3n - Dxy3 + 8(n + Dx%? + 32nx%y3 + 28(3n - 1)x3y3 + 16nxy*

Y m(TM-TCNB)x!® + ) my(TM-TCNB)x®

abeE,

+ ) my(TM-TCNB)XB + ) ms(TM-TCNB)x'®

abeE;

abEE:,

+ ) my(TM-TCNB)x®

abeEs

|Ex]x1© + |E5|x® + |E5|x3 + |E4|x"® + |Es|x®

4(3n — Dx° + 8(n + 1)x® + 32nx13 + 28(3n — x'® + 16nx%
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SO((TM-TCNB);x) z xVEO+E?Y

abeE(X)
= Y mu(TM-TCNB)XY10 + )" my(TM-TCNB)x¥®
abeE; abeE,
+ Y mu(TM-TCNB)XYB + 3" ms3(TM-TCNB)x V18
abeE; abeE,
+ Y my((TM-TCNB)x¥3
abeE;s

EaxV10 + [Epfx?2 + |Eslx VB 4 |E4|xV18 + |Es|x°
4(3n - DxV10 + 8(n + Dx22 + 32mx¥B + 28(3n - Dx3V2 + 16mx°

Figure 2 shows a graphical presentation of M-polynomial, 3.2 Computation of topological invariants

F-polynomial, S-polynomial, and SO-polynomial of with the help of polynomials of TM-TCNB
TM-TCNB, respectively.

Now, we calculate the topological invariants for TM-TCNB,
including first, second, modified, and augmented Zagreb
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Figure 2: (a) M-polynomial, (b) F-polynomial, (c) S-polynomial, and (d) SO-polynomial of TM-TCNB.
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invariants, Randi¢ invariants, SSD invariant, harmonic S:S,(f(x, ¥))
invariant, ISI invariant, F invariant, S invariant, and SO

%(3n - Dxy> + %(4(n + 1)x%y?

invariant. From Table 1 and the result of M-polynomial, lﬂ_nxzy3
we acquire the following invariants: i 2; .
2%Emn - dv3 4+ = 34
D(fey) = LD + 3560 - DYy + Sy
X
_ 3 2 3 - i 3n-1 3 42 1x2y2 16_" 2,,3
= x((12n - 4)y3 + 2(8n + 8)xy? + 2(32n)xy 3( n - Dxy’ +2(n + Dx%y* + 3 Y
3(84n - 28)x%3 + 3(16n)x%y*
+3(84n Py’ + 306mxy) + E(Bn - DXy + 4—nx3y4
= 4(3n - Dxy? + 16(n + 1x%? + 64nx?y3 9 3
+ 84(3n — DxX%y3 + 48nx’y* DEDY(f(x,y)) = 4(Gn - DB xy? + (n + DQ)%*5x%?
of (x, + 32n(6)P+1x%y3 + 28(3n - 1)(9)P+1x3y3
Dy(f(X,)/)) = yM +1v34,4
oy + 16n(12)P*+x%y
= y(3(12n — 4)xy* + 2(8n + 8)x% SPSP(f(x,y) = %(311 - Dxy3 + 212(n + 1)x32
+ 3(32n)x%y? + 3(84n - 28)xy? Siep -
2,3 3,3
+ 4(16n)3%y3) + %nx Y + ﬁ(Bn - DXy
= 123n - Dxy? + 16(n + Dx%y? + 96nx?y3 H-p
( xy ( xzy Y " 3p+lnX3y4

+ 843n - Dx%y3 + 64nxy4

S,D(f(x,y)) %(12n - 4)xy> + %(16n + 16)x?y?

DD,(f(x,y)) = x%(ny(f(x, )

1
x(123n - 1y + 2 x 16(n + 1xy? + 5(64n)xzy3

3 _ 2,,3
+ 2(96n)xy> + 3(252n — 84)x?%y N % (2521 — 84033 + % 48Py

+ 3(64n)x%y*)
64n ,

4
= 12(3n - Dxy3 + 32(n + Dx?? + 192nx?y3 = §(3n - Dxy? + 8(n + Dx%y? + =X y?
+ 252(3n - 1)X3y3 + 192nx3y“ + 28(3n _ 1)x3y3 + 12nx3y“
0 1
S(f(x,y)) =I@dt SDy(f(x,y)) = (36n - 12)xy> + 5(16n + 16)x?y?
0

+ %(96n)x2y3 + %(252n - 84)x3y3

(12n - 4)xy3? + %(Sn + 8)x%y? + %(BZn)xzy3
1 1 + l(6lm)x3y4
+ E(Slm - 28)x3y3 + 5(1611))(3)/4 3

12(3n - Dxy® + 8(n + x%? + 48nx?y3

= 4(3n - Dxy> + 4(n + Dx%? + 16nx%3
( oy Al L Y +28(3n - DX’y + 647“)(3%‘

+ E(Bn - DXy + 16—nx3y“
3 3
JUfOGy) = f(, x) = 4(3n — Dx* + 8(n + Dx*
y
J‘f(X, t)dt + 32nx5 + 28(3n — 1)x® + 16nx’
t
0

Sy(f(x, ¥))
g = 4(5n + 1x* + 32nx°> + 28(3n — Dx® + 16nx’
SJ(f0x, y)) = 3 x 45n + Dx* + S32M° + ¢

x 28(3n — 1)x® + %(16n)x7

%(12n - 4)xy3 + %(8;1 + 8)x%y?

1 1
Z(32n)x%y3 + =(84n — 28)x33
+ 3(3 n)x?y? + 3( 4n Xy = G+ Dx* + 3§nx5 + %(3n ~ x5
+ %(16n)x3y‘* + 167nx7
P 22, 32 55 2SJ(f(x,y)) = 25n + Dx* + x5+ B30 - 1)x6
(Bn - Dxy’ + 4(n + Dx%y? + X4y 5 3
3 3 207
+ =X

+ ?(Bn - Dx3y3 + 4nxy? !
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JDDy(f(x, y))

12(3n — Dx* + 32(n + Dx* + 192nx> + 252(3n — 1)x°® + 192nx’
4(17n - 5)x* + 192nx® + 252(3n — 1)x® + 192nx’

SIDDy(f(x, ¥))

% x 4(17n — 5)x* + %(1921’1)X5 + % x 252(3n - 1)x® + %(19211))(7

(17n - 5)x* + %}ﬁ +42(3n — Dx® + @ﬂ

Df( f(x,¥) =36(3n — Dxy3 + 32(n + Dx%? + 288nx?y3 + 252(3n — 1)x3y3 + 256nx3y*

Dy3( f(x,y)) =108(3n — Dxy> + 64(n + 1)x%y? + 864nx%y3 + 756(3n — 1%y + 1024nx3y*

DXD;( f(x,y)) =108(3n — Dxy> + 128(n + Dx%y? + 1728nx?%y> + 2268(3n — 1)x3y> + 3072nx3y*

D{D)(f(x,y)) = 108(3n — Dxy> + 256(n + 1)x?%? + 3456nx%> + 6804(3n — D)X’y + 9216nx%y*

D{D}(f(x,y)) = 108(3n - Dxy> + 512(n + Dx%? + 6912nx2%y> + 20412(3n - DX’y> + 27648nx’y*
JDID)(f(x,y)) = 108(3n — Dx* + 512(n + Dx* + 6912nx> + 204123n - 1)x° + 27648nx’

= 4(209n + 101)x* + 6912nX5 + 20412(3n — 1)x6 + 27648nx7
QJDDJ(f(x,y)) = 4(209n + 101)x? + 6912nx> + 20412(3n — Dx* + 27648nx°

SQJDID;(f(x,y)) = 2(209n + 101)x? + 2304nx* + 5103(3n — Dx* + 27674811)(5

SQJIDID)(f(x, y)) = (209n — 101)x? + 768nx> + #(Bn - x4 + Mﬁ

S2QJDDY(f(x, ¥)) = %(20911 — 101)x2 + 256nx + —51(6)3 (Gn - Dx* + 27162458n x5

Now, the second condition, i.e., x = y = 1 on above-computed expressions is applied to get the exact formulae of
topological indices.

M(TM-TCNB) = (Dy + Dy)(TM-TCNB;X, y)ly -, - 1
= (16(3n — Dxy? + 32(n + Dx%? + 160nx?%y> + 168(3n — Dx3y> + 11203y*) |, - -1

= 16(3n - 1) + 32(n + 1) + 160n + 168(3n — 1) + 112n) = 856n — 152
(DD,)(TM-TCNB;X, y)ly -y -1

(123n - Dxy? + 32(n + Dx%y? + 192nx%y3 + 252(3n — 1)xX3y3 + 19203y %), = -1
12B3n-1)+32(n +1) + 192n + 252(3n — 1) + 192n = 1208n - 232

M{"(TM-TCNB) = (5,S,)(TM-TCNB);X, ¥)|x =, -1

M,(TM-TCNB)

(i(Bn - Dxly3 + 2(n + Dx%y? + K’Tnxzf + %(Bn - Dx3y3 + l;—nx3y4)|xzy:1

—(3n—1)+2(n+1)+16%+—(3n—1)+?—22 292

RR,(TM-TCNB)) = (S£SP)(TM-TCNB;X, ¥)|x =y -1

24P 28 41-p
(3p+1(3n—1)xy +27%(n + Dx%y? + 3 nxy + one ——(n - Dx3y3 + v nx3y )‘

24-p {-p
1-
3p+l(3n -D+22°(n+1) + p+1n + p+1(3n -1+ T

n
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SSD(TM-TCNB) = (D,S, + D,S,)(TM-TCNB;x, y)|x =, -1

(%(3n - Dxy3 + 8(n + Dx%y? + 64Tnxzy3 +28(3n - 1)x3y3 + (12n)x3y*

+12(3n - Dxy3 + 8(n + Dx%y? + 64nx?y> + 28(3n — DXy + 6;+—nx3y")

x=y=1
_ ?m S 416+ 1) + 2281 5630 - 1) + 2000
980 160
= —N - —
3 3

I(TM-TCNB) = (SJD,D,)(TM-TCNB;x, y)|x - 1

= ((17n - 5)x* + %XS +42(3n - 1xb + @ﬂ)h:l
=(17n—5)+?+42(3n—1)+@
_ 809, 4y
35
H(TM-TCNB) = (25J)(TM-TCNB;x, y)|x -1
= (2(5n + Dx* + 64—nx5 + ?(Bn - x® + 327nx7)|le
= 2(5n+1)+64?n+?(3n—1)+32—n
_ 1938 2
35 3
A(TM-TCNB) = (57QoJD;D;)(TM-TCNB;X, y)|x -1

(2(209n + 101)x2 + 2304nx3 + 5103(3n - Dx* + MX5)|X:1

= 2(209n + 101) + 2304n + 51033n - 1) +

27648n
5

= 117§03 n - 4901,

FI(TM-TCNB) = D,(TM-TCNB;x)|x -1

(40(3n — Dx'° + 64(n + Dx® + 416nx3 + 504(3n - 1)x8 + 400nx%)|, - 4
40(3n - 1) + 64(n + 1) + 416nx + 504(3n - 1) + 400n

2512n - 24

S(TM-TCNB) = Dy (TM-TCNB;xX)|y - = (16(3n — D)x* + 48nx)|y -,

16(3n - 1) + 48n + = 96n — 16

SO(TM-TCNB) = D,(TM-TCNB;x)|x -1

(4y10(3n - DxV10 + 164/2(n + Dx>2 + 32BmxVB

+ 84~/2(3n — DXV + 80nx)| -1

4J10(3n - 1) + 16+/2(n + 1) + 324/13n + 84y2(3n - 1) + 80n
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Table 3: Computation of topological invariants by the help of M-polynomial of TM-TCNB

[n] M, M, mpr RR, SSD A I H
[ 704 976 19.556 0.0000 273.333 1270.059 208.828 48.038
2] 1,560 2,814 41.556 0.0001 600 2808.555 417.657 103.409
3] 2,416 3,392 64 0.0002 926.667 4347.052 626.485 158.780
(4] 3,272 4,600 85.556 0.0003 1253.333 5885.548 835.314 214.152
(5] 4,128 5,808 107.556 0.0003 1580 7424.045 1044.142 269.5238
(6] 4,984 7,016 129.556 0.0004 1906.667 8962.541 1252.971 324.895
71 5,840 8,224 151.556 0.0005 2233.333 10501.038 1461.800 380.266
(8] 6,696 9,432 173.556 0.0005 2560 12039.534 1670.628 435.638
[9] 7,552 10,640 195.556 0.0006 2886.667 13578.031 1879.457 491.009
[10] 8,408 11,848 217.556 0.0007 3213.333 15116.527 2088.285 546.380

3.3 Comparison

In this section, we present a numerical (Tables 3 and 4)
and graphical (Figure 3) comparison of topological indices
of M-polynomials, F-polynomial, sigma polynomial, and
Sombor polynomial forn=1, 2, 3, 4, ..., 10 for TM-TCNB.

3.4 Cuboctahedral bimetallic
structure (MOPs)

The number of vertices and edges of cuboctahedral bime-
tallic networks (MOPs) (Figure 4) are 196n and 240n,

Table 4: Computation of topological invariants by the help of
F-polynomial, S-polynomial, and SO-polynomial of TM-TCNB

[n] A s )

11 2,488 80 1299.326
[2] 5,000 176 2922.429
3] 7,512 272 4545532
(4] 10,024 368 6168.635
5] 12,536 464 7791.738
(6] 15,048 560 9414.841
7] 17,560 656 11037.944
8] 20,072 752 12661.047
[9] 22,584 848 14284.1500
[10] 25,096 944 15907.252

respectively. In cuboctahedral bimetallic networks (MOPs),
there are four types of vertices: degrees 1, 2, 3, and 4, respec-
tively. Table 5 shows the edge partition of cuboctahedral
bimetallic networks (MOPs) depending on the degrees of
end vertices of each edge.

25000

20000

15000

10000

5000

1 2 3 4 5 6 7 8 9 10
n
H SO A S F
—— SSD —— Ml MI" RR,, M2
—1

Figure 3: Comparison of topological invariants by applying polyno-
mials for TM-TCNB at x=1and y = 1.
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Figure 4: Clusters investigated a unit cell of cuboctahedral bimetallic networks using density functional theory methods: (a) formate,
(b) benzoate, and (c) water solvated.

S((MOPs);x)
Table 5: Edge partition of MOPs based on degrees of end vertices of B €=y
each edge - Z X
abeE(X)
= 9
@@, qb) @ (22 23 @24 (33 (3.4 = Y my((MOPs))X° + ) my((MOPs))
abeE, abeE,
Frequency 36n 16n 120n 42n 24n 16n i Mo-((MOPS))x + 1o ((MOPS)x%
Set of edges  E; E, Es E, E E, ag@ 2(( ) ag& 24(( )
+ ) mx((MOPs)) + ) my((MOPs))x
abeEs abeEg

3.5 Polynomials of cuboctahedral bimetallic |E1|X9 + |Eo| + |Eslx + |E4|X4 + |Es| + |Eglx

networks (MOPs) = 36mx° + 16n + 120nx + 42nx* + 24n + 16nx
= 36nx° + 42nx* + 136nx + 40n

Let G be a molecular graph of MOPs. Then, using Table 5
in Egs. 1-4, respectively, the M-, F-, S-, and SO-polyno-
mials for MOPs are computed as follows:

M((MOPs);x, y)

Z My, ((MOPs))xPy4

d<p<g<A

Y my(MOPs))xly* + ) myp((MOPs))x?y2 + ) my((MOPs))x?y> + ) my,((MOPs))x%y*

abeE; abek, abeE; abeE,
+ ) myp(MOPs))%y? + ) m3,((MOPs))xPy*
abeEs abeEg
|Exjxy* + |Eox?y? + |Es|x?? + |Eq|x?y* + |Es|y? + |Eg|xPy*

36nxy* + 16nx%y? + 120nx?%y> + 42nx%y* + 24nx’y? + 16nx3y*

FI((MOPs);x) Y K@+
abeE(X)
> my(MOPs)x'7 + 3" myp(MOPs)x®x+ ) my((MOPS)X + ) my,((MOPs))x?
abeFE; abeE, abEE; abeE4
+ Z m33((MOPs))x18 + Z M3, ((MOPs))x%
abeEs abeEg
= [EXY + |Exx® + |E3|x® + |E4|x*° + |Es|x'® + |Eg|x®

36nx7 + 16nx8 + 120nx3 + 42nx?° + 24nx'8 + 16nx%
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SO((MOPs);x)
= ZXW%Wf
abeE(X)
= Y mu(MOPs)xV7 + ) my((MOPs))x¥®
abeE; abeE,
+ ) mu((MOPS)XY + 3 my,(MOPs))x¥2
abeE; abeE,
+ Y my((MOPs)xV® + Y myy((MOPs)x¥%
abeEs abeEg
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SO((MOPs);x)
=[BT + |2 + |Es® + |Eyx®
+ |Esp3V2 4 |EgS
= 36mx¥17 + 16nx22 + 120nxVB + 42nx>5
+ 24032 + 16nx°
Figure 5 shows the graphical presentation of M-poly-

nomial, F-polynomial, S-polynomial, and SO-polynomial
of transition cuboctahedral bimetallic systems (MOPs).

(d)

Figure 5: (a) M-polynomial, (b) F-polynomial, (c) S-polynomial, and (d) SO-polynomial of transition cuboctahedral bimetallic net-

works (MOPs).
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3.6 Computation of topological invariants Sy(f(x, )
by applying polynomials for R
cuboctahedral bimetallic - .[ ;o
0

networks (MOPs)

%(mlm)xy4 + %(E&Zn)xzy2 + %(360n)x2y3
Now, we calculate the topological invariants for cubocta-
hedral bimetallic networks (MOPs), known first, second,
modified, and augmented Zagreb invariants, Randi¢ invar-
iants, SSD invariant, harmonic invariant, ISI invariant,
F invariant, S invariant, and SO invariant. From Table 1,
we acquire the results of M-polynomial as follows:

+ %(168n)x2y“ + %(72n)x3y3 + %(64n)x3y“

36nxy* + 16nx%y? + 120nx?%y> + 42nx%y* + 24nx3y>

+ 16nxy*

SSy(f(x,y) = (36mxy* + %(16n)x2y2 + %(1201’1)%)/3

Dy(f(x,¥))
1 a4, 1 3,3
Ty + E(42n)x V4 + E(zlm)x y
ox
1(16 ) 3,4
= x((36n)y* + 2(16n)xly? + 2(120n)xy3 + 2(42n)xly* +uenxy
+ 3(24n)x%y? + 3(16n)x%y*) = 36mxy* + 8nx%? + 60nx2y>3 + 2Inx%y*
= 36nxy* + 32nx%y? + 240nx%3 + 84nx%y* + 72nx3y3 + 83y + 16—nx3y4
+ 48nx3y* 3
DIDP(f(x,y)) = 144(4)Pnxy* + 64(4)Pnx?y?
Dy(f(x, y) + 720(6)Pnx?y? + 336(8)Pnx%y*
- yM + 216(9)Pndy3 + 192(12)Pnx3y*
ay

SESP(f(%,Y) = 9N Prxy” + (4)Prx’y?

4(36n)xy3 + 2(16n)xly? + 3(120n)x%y? + 4(42n)x3y3
y(4@6n)xy® + 2(16n)x'y* + 3(120m)x%y* + 4(42n)x°y + 20(6)-Pny’ + 42(8) Prxy®

3,2 3,3
+ 3(24n)x°y? + 4(16n)x°y°) + 83)%nxdy3 + 16(12) Py’
= la4nxy® + 32nx%y? + 360nx%y3 + 168nx%y* + 72ny3 . ) .
+ 64nx3yt SD(f(x,y)) = 2(36n)xy4 + 5(32n)x2y2 + 5(240n)xzy3
DDy(f(x,y)) + %(84n)x2y“ + %(7211))(3y3

XD )

x((144n)xy* + 2(32n)xy? + 2(360n)x'y3 + 2(168n)xly*
+ 3(72)x%3 + 3(64n)x%y*)

l44nxy® + 64nx?y? + 720nx?%y> + 336nx%y* + 216nx3y3

+ %(48n)x3y“

= 9nxy* + 16nx%y? + 80nx%y> + 21nxy*

+ 24n3y? + 12y,

+ 192nx3y* SDy(f(x,y)) = (44n)xy* + %(32n)x2y2 + %(36071)xzy3
Sx(f(x, Y)) + l(l68n)x2y4
X 2
flt,y)
= _[Tdt + %(72n)x3y3 + %(6lm)x3y4
0

la4nxy® + 16nx%y? + 180nx?%y> + 84nx%y*

B6n)xy* + 1(32n)x2y2 + l(240n)x2y3 + 1(84n)x2y“
2 2 2 3,5, 041 5 4
1 1 + 24nx°y> + TX y
+ —(72Dx3y3 + —(48n)x3y*

3 3 J(fx, y) =f(x,x) = 16nx* + 156nx> + 66nx®

+ 16nx’

36nxy* + 16nx%y? + 120nx%y> + 42nx%y* + 24nx3y>

+ 16ny*
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SJ(f(x,y))

1 1 1
—(16n)x* + =(156n)x> + —(66n)x°
4( ) 5( ) 6( )

1
+—(16n)x"
7( )

4nx* + %XS + 11nx® + ?n)ﬂ

2SJ(f(x,y)) = 8nx* + %ﬂ + 22nx® + %nﬂ

JD,Dy(f(x,y)) = 64nx* + 864nx> + 552nx® + 192nx’
SJID:Dy(f (x, ¥))

%(64n)x“ + %(864n)x5 + %(552n)x6 + ;(192n)x7

16nx* + %HXS + 92nx® + 192

nx’,

Dyf(x,y)
= 42(144n)xy* + 24(32n)x%y? + 3%(360n)x?y3
+ 42(168n)x%y* + 3X(72n)x3y3 + 4(64n)x3y*
= 2304nxy* + 128nx?%y? + 3240nx%y? + 2688nx%y*
+ 648nx3y3 + 1024nx3y*

D{D}(f(x,y))
= 2304nxy* + 23(128n)x%y? + 23(3240n)x?y>
+ 23(2688n)x2y* + 33(648n)x3y> + 33(1024n)x3y*
= 2304mxy" + 1024nx2? + 25920nx2y3 + 21504nx%y*
+ 17496nx3y3 + 27648nx3y*

JDIDJ(f (%, ¥))

= 1024nx* + 28224nx5 + 39000nx® + 27648nx’
QDD (f(x, )

= 1024nx? + 28224nx3 + 39000nx* + 27648nx>
S2Q2JD;D)(f(x, ¥))

1\ 1\ 1y
(E) (1024n)x2 + (5) (28224n)x3 + (Z) (39000n)x*

3
+ (%) (27648n)x>

3136, 4875 , 27648
—nX°" + —NX" + ——NX
8 125

128nx? +

Now, the second condition, i.e., x = y = 1 on above-

calculated expressions is applied to get the exact for-
mulas of all topological indices.

M;(MOPs)
= (Dx + D))(MOPs;x, ¥)|x =y =1

(180nxy* + 64nx%y? + 600nx%y3 + 252nx%y*

+ 144103y3 + 11203y )|y -4
1352n

DE GRUYTER

M,(MOPs)
= (DxDy)(MOPs;x, ¥)|x =y =1

(144nxy* + 64nx%y? + 720nx%y3 + 336nx%y* + 216nx3y>
+ 19203y )| =y 1
= 1672n

Mlm(MOPS) = (sty)(MOPS§X’ Y)|x =y=1

= (36nxy“ + 8nx%y? + 60nx?y> + 21nx%y*

+ 8nxly3 + ?nx3y“)|x —y=1
415n
3
RR,(MOPs) = (S{SJ)MOPs;x, y)lx =y -1

(9@ -Prxy* + (4)Pnx?y? + 20(6) Pnx?y3
+ 42(8) Prxy* + 8(3)*ndy3

+16(12) Py )|y =y -1

9(&)'Pn + (4)*Pn + 20(6)' Pn + 42(8)Pn
+ 8(3)'"%n + 16(12)*n

SSD(MOPs)

(Sny + Sny)(MOPS;X; Yk = y=1

= (153nxy4 + 32nx%y? + 260nx%y3 + 105nx%y*

+ 48nx3y3 + %m@y“)k —y=-1

1894n

30000
20000

3
10000 /
Lﬂ’ =

n
—H ——SO S F
—— Ml —— SSD m”1 RR,, M2

— 1

Figure 6: Comparision of topological invariants by applying poly-
nomials for cuboctahedral bimetallic networks (MOPs) atx=1and y=1.
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Table 6: Comparison of topological invariants by applying M-polynomial for cuboctahedral bimetallic networks (MOPs) atx=1and y =1

[n] m, m; mr RR, SSD A 1 H
[1] 1,352 1,672 138.333 0.0000 371.333 2003.892 308.228 128.971
[2] 2,704 3,344 276.667 0.0001 742.666 4007.784 616.4571 257.942
(3] 4,056 5,016 415 0.0002 1114 6011.677 924.685 386.914
(4] 5,408 6,688 553.333 0.0002 1485.333 8015.569 1232.914 515.885
(5] 6,760 8,360 691.666 0.0003 1856.666 10019.461 1541.142 644.8571
(6] 8,112 10,032 830 0.0003 2228 12023.354 1849.371 773.828
(7] 9,464 11,704 968.333 0.0004 2599.333 14027.246 2157.60 902.8
(8] 10,816 13,376 1106.667 0.0004 2970.666 16031.138 2465.828 1031.771
[9] 12,168 15,048 1245 0.0005 3342 18035.031 2774.0571 1160.742
[10] 13,520 16,720 1383.333 0.0005 3713.333 20038.923 3082.285 1289.714
FI(MOPs)
Table 7: Comparison of topological invariants by applying F-, S-, D.)(MOP
= S;X, -
and SO-polynomials for cuboctahedral bimetallic networks (MOPs) (Do) V=1
atx=1 = (612nxY + 128nx® + 1560nx" + 840nx%® + 432nx'®
+ 4OOYLX25)|X =1
[n] Fl S SO = 3972n
[1] 3,972 628 996.005 S(MOPs)
(2] 7,944 1256 1992.011
(3] 11,916 1884 2988.017 = (Dx)(MOPs;x, Vik=1= (Dx)(MOPs;x, y)lx =1
(4] 15,888 2512 3984.023 = (324nx° + 120nx + 168nx* + 16nX)|x - 1
(5] 19,860 3140 4980.029 -~ 628n
(6] 23,832 3768 5976.035
(7] 27,804 4396 6972.041 SO(MOPs)
(8] 31,776 5024 7968.047 = (Dy)(MOPs;x, ¥)|x =1
[9] 35,748 5652 8964.052 _ JT 23 VB
[10] 39,720 6280 9960.058 = GOVI7 et + 32422 + 12013 nx
+ 845nx>5 + 7242nx3V2 + 80nx5)|, _4
= 36417n + 32/2n + 1204/13n + 84/5n + 72\2n
+ 80n
I(MOPs) = (SJDyDy)(MOPs;x, ¥)|x -1 In Figure 6 and Tables 6 and 7, a comparison of
864 192 topological invariants by applying polynomials for cuboc-
= 16nx“+—nx5+92nx6+inx7 lx—y=1 polog i ) Yy applyng poly ;
5 7 tahedral bimetallic networks (MOPs) at x =1andy =11s
_ 10788 presented. We can analyze that all topological invariants
35 are increasing as the values of n increases.

H(MOPs) = (25J)(MOPs;x, y)|x -1

= (Snx“ + %)ﬁ + 2nx® + 3—72nx7)|x=1
4 Conclusion

3394
BT

In this article, we give M-, F-, S-, and SO-polynomials of
A(MOPs) = (5;QJD;D;)(MOPs;x, ¥)|; - 1 the two most appealing networks metal-organic networks
_ , 3136 5 4875 (TM-TCNB) and cuboctahedral bimetallic networks (MOPs).
B (128nx Ty g We also calculated the formulae for various degree-depen-
27648 dent topological invariants of critical importance, such as
125 X )"‘ =1 the first, second, modified, and augmented Zagreb invar-
6011677 iants, general and inverse Randi¢ invariants, SSD, har-
= 73000 monic invariants, ISI, F invariant, sigma invariant, and

Sombor invariant of metal-organic networks (TM-TCNB)
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and cuboctahedral bimetallic (MOPs) by using topological
polynomials derived in the previous topic. The Zagreb
invariants of metal-organic networks (TM-TCNB) and
cuboctahedral bimetallic networks (MOPs) furnish total
m-electron energy in increasing form for higher quanti-
ties of n. One can analyze that the strain energy of
metal-organic networks (TM-TCNB) and cuboctahedral
bimetallic networks (MOPs) is high as the values of n
increase. The physical properties, chemical reactivity,
and biological activities of these structures can all be
better understood using topological invariants.
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