Abstract
The Na–H system thermodynamic properties were assessed using Gibbs free energy model parameters obtained from best fit optimizations to combined experimental and first-principles predicted data. The first-principles finite temperature thermodynamic property predictions, based upon density functional theory ground state minimizations and direct method lattice dynamics, were used to supplement the Na–H dataset wherever experimental information was unavailable or unattainable. The predictions proved to be important for extending the evaluation of the heat capacity of the stable NaH phase to cover the complete 0 – 2000 K temperature range. The predicted thermodynamic properties of the hypothetical NaH3 end-member representing complete interstitial H substitution in solid body-centered cubic Na, provided a physical basis for modeling H dissolution in the Na lattice. The modeling also showed satisfactory agreement with experimental measurements of NaH enthalpies of formation, NaH decomposition pressures, and H solubility in liquid Na.
-
This work was financially supported by the U.S. Department of Energy under contract DE–FC36–02AL67610, managed by United Technology Research Center, East Hartford, Connecticut, USA. S. M. Opalka gratefully acknowledges valuable discussions with Paul Saxe of Materials Design, Inc., Taos, New Mexico.
References
[1] B. Magee, in: W.M. Mueller, J.P. Blackledge, G.G. Libowitz (Eds.), Metal Hydrides, Academic Press, New York (1968) 165.10.1016/B978-1-4832-3215-7.50010-1Search in Google Scholar
[2] G. Ghosh, A. van de Walle, M. Asta, G.B. Olson: CALPHAD 26 (2002) 491.10.1016/S0364-5916(02)80003-7Search in Google Scholar
[3] L. Kaufman, P.E.A. Turchi, W. Huang, Z.-K. Liu: CALPHAD 25 (2002) 419.10.1016/S0364-5916(01)00061-XSearch in Google Scholar
[4] X. Lu, Y. Wang: CALPHAD 26 (2002) 555.10.1016/S0364-5916(02)80007-4Search in Google Scholar
[5] G. Kresse, J. Hafner: Phys. Rev. B 47 (1993) 558.10.1103/PhysRevB.47.558Search in Google Scholar
[6] G. Kresse, J. Furthmuller: Comput. Mater. Sci. 6 (1996) 15.10.1016/0927-0256(96)00008-0Search in Google Scholar
[7] G. Kresse, J. Furthmuller: Phys. Rev. B 54 (1996) 11169.10.1103/PhysRevB.54.11169Search in Google Scholar PubMed
[8] MedeA-Phonon Version 1.0 using Phonon Software 3.11, Copyright K. Parlinski.Search in Google Scholar
[9] K. Parlinski, Z.Q. Li, Y. Kawazoe: Phys. Rev. Lett. 78 (1997) 4063.10.1103/PhysRevLett.78.4063Search in Google Scholar
[10] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais: Phys. Rev. B 46 (1992) 6671.10.1103/PhysRevB.46.6671Search in Google Scholar
[11] G. Kresse, D. Joubert: Phys. Rev. B 59 (1999) 1758.10.1103/PhysRevB.59.1758Search in Google Scholar
[12] H.J. Monkhorst, J.D. Pack: Phys. Rev. B 13 (1976) 5188.10.1103/PhysRevB.13.5188Search in Google Scholar
[13] X. Ke, I. Tanaka: Phys. Rev. B 71 (2005) 024117.10.1103/PhysRevB.71.024117Search in Google Scholar
[14] K.K. Irikura, in: K.K. Irikura, D.J. Frurip (Eds.), ACS Symposium Series, Vol. 677, American Chemical Society, Washington, D.C. (1998) Appendix B.10.1021/bk-1998-0677.ch023Search in Google Scholar
[15] K.P. Huber, G. Herzberg: Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co., New York (1979).10.1007/978-1-4757-0961-2Search in Google Scholar
[16] J.D. Cox, D.D. Wagman, V.A. Medvedev: CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York (1989), (http://www.codata.org/).Search in Google Scholar
[17] M.W. Chase, Jr.: NIST-JANAF Themochemical Tables, 4th Ed., J. Phys. Chem. Ref. Data, Monograph 9 (1998) 1.Search in Google Scholar
[18] H. Sugimoto, Y. Fukai: Acta Metall. Mater. 40 (1992) 2327.10.1016/0956-7151(92)90151-4Search in Google Scholar
[19] I. Ansara, B. Sundman, in: P.S. Glaeser (Ed.), Computer Handling and Dissemination of Data, Vol. 1, North-Holland, Amsterdam (1987) 154.Search in Google Scholar
[20] A. Dinsdale: CALPHAD 15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar
[21] H.M. Roder: Bull. Alloy Phase Diagrams 2 (1981) 362.10.1007/BF02868295Search in Google Scholar
[22] M. Hillert: Phase Equilibria, Phase Diagrams and Phase Transformations, Cambridge University Press, Cambridge (1998).Search in Google Scholar
[23] J. Agren, B. Cheynet, M.T. Clavaguera-Mora, J. Hertz, K. Hack, F. Sommer, U. Kattner: CALPHAD 19 (1995) 449.10.1016/0364-5916(96)00003-XSearch in Google Scholar
[24] A. San-Martin, F.D. Manchester: Bull. Alloy Phase Diagrams 11 (1990) 287.10.1007/BF03029300Search in Google Scholar
[25] D.W. McClure, G.D. Halsey, Jr.: J. Phys. Chem. 69 (1965) 3542.10.1021/j100894a049Search in Google Scholar
[26] R.J. Newcombe, J. Thompson: J. Polarographic Soc. 14 (1968) 104.Search in Google Scholar
[27] S.A. Meacham, E.F. Hill, A.A. Gordus: The Solubility of Hydrogen in Sodium, APDA-241, Atomic Power Development Associates (1970).Search in Google Scholar
[28] D.R. Vissers, J.T. Holmes, L.G. Bartholme, P.A. Nelson: Nucl. Technol. 21 (1974) 235.10.13182/NT74-A31394Search in Google Scholar
[29] D.D. Williams, J.A. Grand, R.R. Miller: J. Phys. Chem. 61 (1957) 379.10.1021/j150549a032Search in Google Scholar
[30] C.C. Addison, R.J. Pulham, R.J. Roy: J. Chem. Soc. (1965) 116.10.1039/jr9650000116Search in Google Scholar
[31] E.F. Sollers, J.L. Crenshaw: J. Am. Chem. Soc. 59 (1937) 2724.10.1021/ja01291a074Search in Google Scholar
[32] A. Herold: Compt. Reud. 228 (1949) 686.Search in Google Scholar
[33] A. Herold: Ann. Chim. 12 (1951) 537.10.1097/00000542-195107000-00028Search in Google Scholar
[34] W. Klostermeier, E.U. Franck: Phys. Chem. 86 (1982) 606.10.1021/j100394a006Search in Google Scholar
[35] O.A. Skuratov, O.N. Pavlov, V.I. Danilkin: Russian J. Inorganic Chem. 21 (1976) 1065.Search in Google Scholar
[36] C.E. Messer, L.G. Fasolino, C.E. Thalmayer: J. Am. Chem. Soc. 77 (1955) 4524.10.1021/ja01622a025Search in Google Scholar
[37] S.R. Gunn: J. Phys. Chem. 72 (1967) 1386.10.1021/j100864a031Search in Google Scholar
[38] E.V. Sayre, J. Beaver: J. Chem. Phys. 18 (1950) 584.10.1063/1.1747706Search in Google Scholar
[39] Thermo-Calc Software AB, Stockholm, Sweden.Search in Google Scholar
[40] G.A. Sullivan, J.W. Weymouth: Phys. Rev. 136 (1964) A1141.10.1103/PhysRev.136.A1141Search in Google Scholar
[41] V.G. Kuznetsov, M.M. Shkrabkina: Zh. Strukt. Khim. 3 (1962) 532.10.1007/BF00753238Search in Google Scholar
[42] C. Wolverton, V. Ozolins, M. Asta: Phys. Rev. B 69 (2004) 144109-1.10.1103/PhysRevB.69.144109Search in Google Scholar
Summary of Thermodynamic Parameters Describing the Na–H System
Values are given in SI units (Joule, mole, Kelvin, and Pa) and correspond to one mole of formula units of the phases. The parameters marked with an asterisk (*) were evaluated in the present work. The parameters for elemental Na are from Ref. [20]. The parameters for the gas phase are from Ref. [17].
Liquid with formula (Na, H)
bcc_A2 with formula (Na)1(H, Va)3
for 0 K < T < 298.15 K (*)
= 206 754 + 258.2187T– 42.90288T ln T– 0.004047T2 + 1.889 × 10 –7T3 + 696 986/T
for 298.15 K < T < 2000 K (*)
NaH with formula (Na)1(H)1
for 0 K < T < 298.15 K (*)
= – 75 768 + 293.7188T–48.6935T ln T–2.614 × 10 –4T2 + 1.8048 × 10– 8T3 + 632 658/T
for 298.15 K < T < 2000 K (*)
Gas with formula (H, H2, H1Na1, Na, Na2)
Symbols:
GHSERNA
– 11 989.434 + 260.548708T– 51.0393608T ln(T) + 0.072306633T2– 4.3638283 × 10 –5T 3 + 132 154/T
for 298.15 K < T < 371.00 K
– 11 009.557 + 199.61918T– 38.1198801T ln(T) + 0.009745854T2– 1.70664 × 10 –6T3 + 34 342/T + 1.60713 × 1023T– 9
for 371.00 K < T < 2300.00 K
F10383T
+ 211 801.621 + 24.4989821T– 20.78611T ln(T) F10562T
+ 132 553.465– 16.1455876T– 24.82785T ln(T) – 0.010652725T2 + 1.5821195 × 10– 6T3 + 2238.863/T
for 298.15 K < T < 800.00 K
+ 129 256.792 + 35.5334784T– 32.81208T ln(T) – 0.0026811235T2 + 1.59482667 × 10– 7T3 + 223 972.1/T
for 800.00 K < T < 2500.00 K
+ 52 224.6946 + 343.223031T– 71.12485T ln(T) + 0.00541529T2 – 1.38711217 × 10 –7T3 + 28 391 720/T
for 2500.00 K < T < 5800.00 K
+ 307 909.677– 276.144986T + 1.091352T ln(T) – 0.003663472T2 + 7.54038833 × 10– 8T3 – 1.4180265 × 108/T
for 5800.00 K < T < 6000.00 K
F10784T
– 9522.9741 + 78.5273879T– 31.35707T ln(T) + 0.0027589925T2 – 7.46390667 × 10 –7T3 + 56 582.3/T
for 298.15 K < T < 1000.00 K
+ 180.108664– 15.6128256T– 17.84857T ln(T) – 0.00584168T2 + 3.14618667 × 10– 7T3– 1 280 036/T
for 1000.00 K < T < 2100.00 K
– 18 840.1663 + 92.3120255T– 32.05082T ln(T) –0.0010728235T2 + 1.14281783 × 10– 8T3 + 3 561 002.5/T
for 2100.00 K < T < 6000.00 K
F12933T
+ 101 202.044– 12.9290068T– 21.02539T ln(T) + 1.9194285 × 10– 4T2– 2.37558167 × 10– 8T3 + 6714.165/T
for 298.15 K < T < 2700.00 K
+ 123 818.458 – 80.8203215T– 13.00233T ln(T) – 6.87485 × 10 –4T2 –3.3153 × 10– 8T3– 10 435 685/T
for 2700.00 K < T < 5500.00 K
+ 200 317.377 – 314.322311T + 14.94379T ln(T) – 0.0049580625T2 + 8.45444167 × 10– 8T3– 45 680 820/T
for 5500.00 K < T < 9600.00 K
– 248 549.945 + 382.618817T– 61.81729T ln(T) + 8.73722 × 10 –4T2 + 1.54938383 × 10 –9T3 + 4.4661115 × 108/T
for 9600.00 K < T < 10 000.00 K
F12977T
+ 131 697.685 + 6.55101085T– 35.05636T ln(T) – 0.0039954535T2 + 5.82776667 × 10– 7T3– 20 127.66/T
for 298.15 K < T < 800.00 K
+ 123 510.411 + 75.1001481T– 44.47351T ln(T) – 5.345085 × 10– 4T2 + 6.400745 × 10 –7T3 + 1 150 765/T
for 800.00 K < T < 1500.00 K
+ 79 657.0271 + 417.408691T– 91.76357T ln(T) + 0.022097085T2– 1.3875195 × 10 –6T3 + 8 765 605/T
for 1500.00 K < T < 3100.00 K
+ 841 444.171 – 2436.16812T + 261.4099T ln(T) – 0.0509968T2 + 1.46319 × 10– 6T3– 3.005069 × 108/T
for 3100.00 K < T < 4800.00 K
– 471 200.866 + 911.74126T– 131.5149T ln(T) + 0.0011608825T2 + 1.68225167 × 10 –7T3 + 5.200375 × 108/T
for 4800.00 K < T < 6000.00 K
© 2006 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
- Evolution of C-rich SiOC ceramics
- Evolution of C-rich SiOC ceramics
- Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
- Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
- Thermodynamic modelling of the Ce–Ni system
- Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
- Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
- Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
- Reconstruction and structural transition at metal/diamond interfaces
- Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
- High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
- Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
- XRD and TEM study of NiO–LSGM reactivity
- Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
- Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
- Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
- Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
- Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
- On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
- Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
- Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
- The Na–H system: from first-principles calculations to thermodynamic modeling
- Personal
- Conferences
- Frontmatter
- Basic
- Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
- Evolution of C-rich SiOC ceramics
- Evolution of C-rich SiOC ceramics
- Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
- Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
- Thermodynamic modelling of the Ce–Ni system
- Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
- Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
- Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
- Reconstruction and structural transition at metal/diamond interfaces
- Applied
- Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
- High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
- Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
- XRD and TEM study of NiO–LSGM reactivity
- Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
- Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
- Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
- Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
- Regular Articles
- Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
- On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
- Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
- Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
- The Na–H system: from first-principles calculations to thermodynamic modeling
- Notifications
- Personal
- Conferences
Articles in the same Issue
- Frontmatter
- Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
- Evolution of C-rich SiOC ceramics
- Evolution of C-rich SiOC ceramics
- Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
- Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
- Thermodynamic modelling of the Ce–Ni system
- Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
- Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
- Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
- Reconstruction and structural transition at metal/diamond interfaces
- Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
- High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
- Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
- XRD and TEM study of NiO–LSGM reactivity
- Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
- Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
- Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
- Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
- Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
- On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
- Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
- Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
- The Na–H system: from first-principles calculations to thermodynamic modeling
- Personal
- Conferences
- Frontmatter
- Basic
- Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
- Evolution of C-rich SiOC ceramics
- Evolution of C-rich SiOC ceramics
- Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
- Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
- Thermodynamic modelling of the Ce–Ni system
- Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
- Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
- Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
- Reconstruction and structural transition at metal/diamond interfaces
- Applied
- Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
- High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
- Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
- XRD and TEM study of NiO–LSGM reactivity
- Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
- Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
- Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
- Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
- Regular Articles
- Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
- On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
- Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
- Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
- The Na–H system: from first-principles calculations to thermodynamic modeling
- Notifications
- Personal
- Conferences