Abstract
Results from our recent simultaneous measurement of all three component activities by Knudsen effusion mass spectrometry, together with results available in the literature from vacancy concentration and calorimetric measurements, have been used in a thermodynamic modelling study. The results of this modelling for the binary B2-AlFe and B2-AlNi phases are presented in this communication. A four-sublattice cluster energy model in the point approximation has been used for the configurational contributions to the Gibbs energy. Excitational free energies are incorporated into the configurational energy and non-configurational contributions are considered to be decoupled from the configurational. The modelling has been found to lead to good agreement between calculated and experimental results for both the thermodynamic properties and the vacancy concentrations. It is clear that B2-AlFe is an antisite defect compound at both the lowest and highest temperatures with vacancy defects only predominating, and to only a small degree, at stoichiometry in an intermediate temperature range. In the case of B2-AlNi, however, vacancy defects predominate at stoichiometry over the whole temperature range so that it can be correctly described as a near-triple defect compound.
-
We are grateful for financial support from the Deutsche Forschungsgemeinschaft (DFG) within the package application “Defects and diffusion in the system (Ni, Fe) Al”.
References
[1] L. Bencze, D.D. Raj, D. Kath, W.A. Oates, J. Herrmann, L. Singheiser, K. Hilpert: Met. Trans. A 34 (2003) 2409.10.1007/s11661-003-0001-8Search in Google Scholar
[2] D. Raj, L. Bencze, D. Kath, W.A. Oates, J. Herrmann, L. Singheiser, K. Hilpert: Intermetallics 11 (2003) 1119.10.1016/S0966-9795(03)00149-3Search in Google Scholar
[3] L. Bencze, D.D. Raj, D. Kath,W.A. Oates, J. Herrmann, L. Singheiser, K. Hilpert: Met. Trans. B 35 (2004) 867.10.1007/s11663-004-0081-xSearch in Google Scholar
[4] L. Bencze, T. Markus, S. Dash, D.D. Raj, D. Kath, W.A. Oates, W. Löser, K. Hilpert: Metallurg. Mater. Trans., in press.Search in Google Scholar
[5] C.L. Fu: Phys. Rev. B 52 (1995) 3151.10.1103/PhysRevB.52.3151Search in Google Scholar
[6] C.L. Fu, X. Wang: Mat. Sci. and Eng. A 239 (1997) 761.10.1016/S0921-5093(97)00664-3Search in Google Scholar
[7] B. Meyer, M. Fähnle: Phys. Rev. B 59 (1999) 6072.10.1103/PhysRevB.59.6072Search in Google Scholar
[8] M. Fähnle, J. Mayer, B. Meyer: Intermetallics 7 (1999) 315.10.1016/S0966-9795(98)00116-2Search in Google Scholar
[9] N. Börnsen, G. Bester, B. Meyer, M. Fähnle: J. Alloys and Compounds 308 (2000) 1.10.1016/S0925-8388(00)00984-1Search in Google Scholar
[10] B. Meyer, G. Bester, M. Fähnle: Scripta Mat. 44 (2001) 2485.10.1016/S1359-6462(01)00919-8Search in Google Scholar
[11] F. Lechermann, M. Fähnle: phys. stat. sol. (b) 224 (2001) R4.10.1002/1521-3951(200103)224:2<R4::AID-PSSB99994>3.0.CO;2-USearch in Google Scholar
[12] G. Bester, B. Meyer, M. Fähnle, C.L. Fu: Mat. Sci. and Eng. A 323 (2002) 487.10.1016/S0921-5093(01)01523-4Search in Google Scholar
[13] M.S. Daw, M.I. Baskes: Phys. Rev. B 29 (1984) 6443.10.1103/PhysRevB.29.6443Search in Google Scholar
[14] Z.-Y. Xie, D. Farkas: J. Mater. Res. 9 (1994) 875.10.1557/JMR.1994.0875Search in Google Scholar
[15] C. Jones, D. Farkas: Comp. Mat. Sci. 6 (1996) 231.10.1016/0927-0256(96)00015-8Search in Google Scholar
[16] Y. Mishin, D. Farkas: Phil. Mag. A 75 (1997) 169.10.1080/01418619708210289Search in Google Scholar
[17] C. Vailhé, D. Farkas: Acta Mater. 45 (1997) 4463.10.1016/S1359-6454(97)00138-9Search in Google Scholar
[18] M. Hagen, M.W. Finnis: Phil. Mag. A 77 (1998) 447.10.1080/01418619808223764Search in Google Scholar
[19] S. Xiaolin, H. Wangyu, X. Hanning, Z. Bangwei: Z. Metallkd. 91 (2000) 734.Search in Google Scholar
[20] G. Bozzolo, C. Amador, J. Ferrante, R.D. Noebe: Scripta Met. et Mater. 33 (1995) 1907.10.1016/0956-716X(95)00474-ASearch in Google Scholar
[21] G. Bozzolo, J. Ferrante, R.D. Noebe, C. Amador: Scripta Mat. 36 (1997) 813.10.1016/S1359-6462(96)00447-2Search in Google Scholar
[22] G. Bozzolo, R.D. Noebe, J. Ferrante, C. Amador: J. Comp-Aided Mat. Design 6 (1999) 1.10.1023/A:1026403832705Search in Google Scholar
[23] G. Bozzolo, R.D. Noebe, F. Honecy: Intermetallics 8 (2000) 7.10.1016/S0966-9795(99)00066-7Search in Google Scholar
[24] S.M. Kim: J. Phys. and Chem. Solids 49 (1988) 65.10.1016/0022-3697(88)90136-9Search in Google Scholar
[25] X. Ren, K. Otsuka: Phil. Mag. A 80 (2000) 467.10.1080/01418610008212062Search in Google Scholar
[26] Y.A. Chang, J.P. Neumann: Prog. Solid State Chem. 14 (1982) 221.10.1016/0079-6786(82)90004-8Search in Google Scholar
[27] R. Krachler, H. Ipser, B. Sepiol, G. Vogl: Intermetallics 3 (1995) 83.10.1016/0966-9795(94)P3690-PSearch in Google Scholar
[28] R. Krachler, H. Ipser: Intermetallics 7 (1999) 141.10.1016/S0966-9795(98)00023-5Search in Google Scholar
[29] J. Breuer, F. Sommer, E.J. Mittemeijer: Met. Trans. A 32 (2001) 2157.10.1007/s11661-001-0191-xSearch in Google Scholar
[30] see papers in the journal CALPHAD.Search in Google Scholar
[31] N. Saunders, A.P. Miodownik: CALPHAD – Calculation of Phase Diagrams, A Comprehensive Guide, Pergamon, Elsevier Science, Oxford 1998.Search in Google Scholar
[32] G. Effenberg (Ed.): COST 507 – Definition of thermomechanical and thermophysical properties to provide a database for the development of new light alloys, Luxembourg, 1998. Office for Official Publications of the European Communities, 1998.Search in Google Scholar
[33] G. Inden: Acta Metall. 22 (1974) 945.10.1016/0001-6160(74)90019-4Search in Google Scholar
[34] L.M. Pike, I.M. Anderson, C.T. Liu, Y.A. Chang: Acta Mater. 50 (2002) 3859.10.1016/S1359-6454(02)00192-1Search in Google Scholar
[35] J. Breuer, F. Sommer, E.J. Mittemeijer: Z. Metallkd. 94 (2003) 954.10.3139/146.030954Search in Google Scholar
[36] B. Dünweg, K. Binder: Phys. Rev. B 36 (1987) 6935.10.1103/PhysRevB.36.6935Search in Google Scholar
[37] D.A. Contreras-Solorio, F. Mejír-Lira, J.L. Morán-López, J.M. Sanchez: Phys. Rev. B 38 (1988) 11481.10.1103/PhysRevB.38.11481Search in Google Scholar
[38] I. Ohnuma, O. Ikeda, R. Kainuma, B. Sundman, K. Ishida: Z. Metallkd. 89 (1998) 847.Search in Google Scholar
[39] C. Wagner: Thermodynamics of Alloys, Adison-Wesley, Cambridge, Mass. 1952.Search in Google Scholar
[40] R. Krachler, H. Ipser, B. Sepiol, G. Vogl: Intermetallics 3 (1995) 83.10.1016/0966-9795(94)P3690-PSearch in Google Scholar
[41] W.A. Oates, H. Wenzl: CALPHAD 17 (1993) 35.10.1016/0364-5916(93)90032-7Search in Google Scholar
[42] B. Sundman, J. Ågren: J. Phys. and Chem. Solids 42 (1981) 297.10.1016/0022-3697(81)90144-XSearch in Google Scholar
[43] W. Huang, Y.A. Chang: Intermetallics 6 (1998) 487.10.1016/S0966-9795(97)00099-XSearch in Google Scholar
[44] G. Ceder: Comp. Mat. Sci. 1 (1993) 144.10.1016/0927-0256(93)90005-8Search in Google Scholar
[45] S.V. Beiden, V.G. Vaks: Phys. Lett. A 163 (1992) 209.10.1016/0375-9601(92)90410-NSearch in Google Scholar
[46] C. Wolverton, A. Zunger: Phys. Rev. Lett. 75 (1995) 3162.10.1103/PhysRevLett.75.3162Search in Google Scholar PubMed
[47] C. Wolverton, V. Ozolin¸sˇ, A. Zunger: Phys. Rev. B 57 (1998) 4332.10.1103/PhysRevB.57.4332Search in Google Scholar
[48] V. Ozolin¸sˇ, C. Wolverton, A. Zunger: Phys. Rev. B 57 (1998) 6427.10.1103/PhysRevB.57.6427Search in Google Scholar
[49] L.G. Ferreira, A.A. Mbaye, A. Zunger: Phys. Rev. B 35 (1987) 6475.10.1103/PhysRevB.35.6475Search in Google Scholar
[50] L.G. Ferreira, A.A. Mbaye, A. Zunger: Phys. Rev. B 37 (1988) 10547.10.1103/PhysRevB.37.10547Search in Google Scholar
[51] A. Zunger, S. Wei, A.A. Mbaye, L.G. Ferreira: Acta Metall. 36 (1988) 2239.10.1016/0001-6160(88)90324-0Search in Google Scholar
[52] B. Sundman, S.G. Fries, W.A. Oates: CALPHAD 23 (1998) 355.10.1016/S0364-5916(98)00035-2Search in Google Scholar
[53] W.A. Oates, in: K. Hilpert, F.W. Froben, L. Singheiser (Eds.), High Temperature Materials Chemistry, Proceedings of the 10th International IUPAC Conference, Jülich, Germany, April 2000, Vol. 15, pages 229 –234, Jülich, Germany 2000. Forschungszentrum Jülich GmbH.Search in Google Scholar
[54] W.A. Oates, H. Wenzl: CALPHAD 16 (1992) 73.10.1016/0364-5916(92)90040-5Search in Google Scholar
[55] M. Albers, L. Bencze, W.A. Oates, H. Wenzl: CALPHAD 19 (1995) 153.10.1016/0364-5916(95)00016-8Search in Google Scholar
[56] E. Henig, H.L. Lukas: Z. Metallkd. 66 (1975) 98.10.1515/ijmr-1975-660207Search in Google Scholar
[57] J. Breuer, A. Grün, F. Sommer, E.J. Mittemeijer: Met. Trans. B 32 (2001) 913.10.1007/s11663-001-0077-8Search in Google Scholar
[58] K. Rzyman, Z. Moser, A.P. Miodownik, L. Kaufman, R.E. Watson, M. Weinert: CALPHAD 24 (2000) 309.10.1016/S0364-5916(01)00007-4Search in Google Scholar
[59] S.V. Meschel, O.J. Kleppa, in: J.S. Faulkner (Ed.), Metallic Alloys: Experimental and Theoretical Perspectives, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994.Search in Google Scholar
[60] H.-N. Su, P. Nash, Z.-K. Liu, in: E. Opila, B. Pleraggi, P. Hou, D. Shifler, T. Maruyama, E. Wuchina (Eds.), High Temperature Corrosion and Materials Chemistry IV, Proc. Vol. 2003 –16, The Electrochemical Society Proceedings Series, pages 489 –502, Pennington, 2003. The Electrochemical Society.Search in Google Scholar
[61] J. Wolff, M. Franz, A. Broska, R. Kerl, M. Weinhagen, B. Köhler, M. Brauer, F. Faupel, T. Hehenkamp: Intermetallics 7 (1999) 289.10.1016/S0966-9795(98)00105-8Search in Google Scholar
[62] J.H. Schneibel, P.R. Munroe: Intermetallics 12 (2004) 111.10.1016/j.intermet.2003.09.004Search in Google Scholar
[63] A.T. Dinsdale: CALPHAD (1990).Search in Google Scholar
[64] S.-L. Chen, S. Daniel, F. Zhang, Y.A. Chang, W.A. Oates, R. Schmid-Fetzer: J. of Phase Equilb. 22 (2001) 373.10.1361/105497101770332910Search in Google Scholar
[65] O. Ikeda, I. Ohnuma, R. Kainuma, K. Ishida: Intermetallics 9 (2001) 755.10.1016/S0966-9795(01)00058-9Search in Google Scholar
[66] C.L. Fu, Y.Y. Ye, M.H. Yoo, K.M. Ho: Phys. Rev. B 48 (1993) 6712.10.1103/PhysRevB.48.6712Search in Google Scholar
[67] A. Subramaniam: Phil. Mag. 83 (2003) 667.10.1080/0141861021000055664Search in Google Scholar
The Tables show the pair exchange energy and entropy values used in the calculation of the cluster energies and entropies. The parameters used in Eq. 5 for the configuration independent contributions are also given.
The calculation of a cluster energy from the listed pair exchange energies can be illustrated by considering the cluster (Al : Fe :Va : Al) as an example of the calculation of a cluster energy from the pair exchange energies. In this cluster, sublattices 1 & 4 and 2 & 3 are second nearest neighbours:
The factor of 1.5 for the next nearest neighbour contributions comes from the differences in the first and second nearest neighbour coordination numbers.
© 2006 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
- Evolution of C-rich SiOC ceramics
- Evolution of C-rich SiOC ceramics
- Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
- Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
- Thermodynamic modelling of the Ce–Ni system
- Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
- Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
- Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
- Reconstruction and structural transition at metal/diamond interfaces
- Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
- High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
- Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
- XRD and TEM study of NiO–LSGM reactivity
- Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
- Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
- Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
- Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
- Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
- On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
- Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
- Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
- The Na–H system: from first-principles calculations to thermodynamic modeling
- Personal
- Conferences
- Frontmatter
- Basic
- Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
- Evolution of C-rich SiOC ceramics
- Evolution of C-rich SiOC ceramics
- Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
- Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
- Thermodynamic modelling of the Ce–Ni system
- Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
- Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
- Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
- Reconstruction and structural transition at metal/diamond interfaces
- Applied
- Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
- High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
- Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
- XRD and TEM study of NiO–LSGM reactivity
- Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
- Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
- Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
- Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
- Regular Articles
- Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
- On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
- Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
- Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
- The Na–H system: from first-principles calculations to thermodynamic modeling
- Notifications
- Personal
- Conferences
Articles in the same Issue
- Frontmatter
- Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
- Evolution of C-rich SiOC ceramics
- Evolution of C-rich SiOC ceramics
- Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
- Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
- Thermodynamic modelling of the Ce–Ni system
- Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
- Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
- Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
- Reconstruction and structural transition at metal/diamond interfaces
- Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
- High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
- Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
- XRD and TEM study of NiO–LSGM reactivity
- Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
- Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
- Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
- Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
- Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
- On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
- Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
- Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
- The Na–H system: from first-principles calculations to thermodynamic modeling
- Personal
- Conferences
- Frontmatter
- Basic
- Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
- Evolution of C-rich SiOC ceramics
- Evolution of C-rich SiOC ceramics
- Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
- Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
- Thermodynamic modelling of the Ce–Ni system
- Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
- Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
- Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
- Reconstruction and structural transition at metal/diamond interfaces
- Applied
- Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
- High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
- Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
- XRD and TEM study of NiO–LSGM reactivity
- Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
- Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
- Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
- Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
- Regular Articles
- Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
- On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
- Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
- Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
- The Na–H system: from first-principles calculations to thermodynamic modeling
- Notifications
- Personal
- Conferences