Home Thermodynamic modelling of the Ce–Ni system
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic modelling of the Ce–Ni system

  • Alexander Pisch EMAIL logo , Jiasong Wang and Jean-Louis Jorda
Published/Copyright: January 11, 2022
Become an author with De Gruyter Brill

Abstract

The phase equilibria in the Ni-rich part of the Ce–Ni binary system were re-determined using DTA, metallography and SEM/EDX. CeNi5+x presents a Ni solubility up to x = 0.53 at 1073 K. The melting point of CeNi5 is 1608 ± 5 K and the CeNi5+x –Ni eutectic has been observed at 1477 ± 5 K and x(Ni) = 0.91. The enthalpy of formation of stoichiometric CeNi5 has been measured by drop dissolution calorimetry in liquid aluminium and a value of ΔfH = – 29.1 ± 2.2 kJ/moles of atoms was derived. Based on this new experimental data and literature values, a complete thermodynamic modelling of the Ce–Ni diagram was performed.


Dr. Alexander Pisch Laboratoire de Thermodynamique et de Physico-Chmie Métallurgiques Domaine Universitaire B.P. 75, F-38402 St Martin d’Heres Cedex, France Tel.: +33 47 682 6513 Fax: +33 47 682 6767

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


  1. This work has been performed and funded in the frame of the Rhône-Alpes regional project “SUPERFLEX”. Valuable discussions with Prof. P. Chartrand (Ecole Polytechnique de Montreal) on the application of the modified quasichemical model to treat metallic liquids are acknowledged.

References

[1] A. Guidotti, G.B. Atkinson, M.M.Wong: J Less Common Met. 52 (1977) 13.10.1016/0022-5088(77)90231-4Search in Google Scholar

[2] G. Sandrock: J. Alloys Compd. 293 (1999) 877.10.1016/S0925-8388(99)00384-9Search in Google Scholar

[3] M. McCormack, S. Jin, J.E. Graebner, T.H. Tiefel, G.W. Kammlott: Diamond and Related Mater. 3(3) (1994) 254.10.1016/0925-9635(94)90088-4Search in Google Scholar

[4] A. Goyal, D.P. Norton, J.D. Budai, M. Paranthaman, E.D. Specht, D.M. Kroeger, D.K. Christen, Q. He, B. Sa’an, F.A. List, D.F. Lee, P.M. Martin, C.E. Klabunde, E. Harteld, V.K. Sikka: Appl. Phy Lett. 69 (1996) 1795.10.1063/1.117489Search in Google Scholar

[5] R. Subasri, H. Nafe, F. Aldinger: Mater. Res. Bull. 38(15) (2003) 1965.10.1016/j.materresbull.2003.09.005Search in Google Scholar

[6] M. Zinkevich, F. Aldinger: J. Alloys Compd 375(1–2) (2004) 147.10.1016/j.jallcom.2003.11.138Search in Google Scholar

[7] M. Baricco, M. Palumbo: J. Met. Nano. Mat. 20 (2004) 415.10.4028/www.scientific.net/JMNM.20-21.415Search in Google Scholar

[8] J.-C. Zhao: Ann. Rev. Mater. Res. 35 (2005) 51.10.1146/annurev.matsci.35.100303.111314Search in Google Scholar

[9] U.K. Duisemaliev: Russ. J. Inorg. Chem. 9 (1964) 417.Search in Google Scholar

[10] K.A. Gschneidner, M.E. Verkade: Document IS-RIC-7 (1974) 28.Search in Google Scholar

[11] P. Nash, C.H. Tung: Phase Diagrams of Binary Nickel Alloys, ASM, Ohio (1991) 62.Search in Google Scholar

[12] R. Vogel, A. Iandelli, L. Rolla: Z. Metallkd. 34 (1947) 97.10.1515/ijmr-1947-380401Search in Google Scholar

[13] R.H. Perkins, L.A. Geoffion, J.C. Biery: Trans. AIME 233 (1965) 1703.Search in Google Scholar

[14] J.M. Gebhart III, D.E. Etter, P.A. Tucker, in: Proceeding of the Sixth Conference on Rare Earth Research (1967) 452.Search in Google Scholar

[15] F. Zhang, L. Gu: J. Rare Earths 3 (1983) 56.Search in Google Scholar

[16] G. Qi, Z. Li, K. Itagaki, A. Yazawa: Materials Transactions, JIM 30(8) (1989) 583.10.2320/matertrans1989.30.583Search in Google Scholar

[17] D.-Y. Kim, M. Ohtsuka, K. Itagaki: J. Min. Mater. Process. Inst. Jpn. 110 (1994) 95.10.2473/shigentosozai.110.95Search in Google Scholar

[18] C. Colinet, A. Pasturel: Phys. Stat. Sol. A 80 (1983) 75.10.1002/pssa.2210800164Search in Google Scholar

[19] Q. Guo, O.J. Kleppa: J. Alloys Compd. 270 (1998) 212.10.1016/S0925-8388(98)00509-XSearch in Google Scholar

[20] K. Yamaguchi, D.Y. Kim, M. Ohtsuka, K. Itagaki: J. Alloys Compd. 221 (1995) 161.10.1016/0925-8388(94)01422-1Search in Google Scholar

[21] B.P. Reddy, R. Babu, K. Nagarajan, P.R.V. Rao: J. Nucl. Mat. 247 (1997) 235.10.1016/S0022-3115(97)00072-XSearch in Google Scholar

[22] M. Palumbo, G. Borzone, S. Delsante, N. Parodi, G. Cacciamani, R. Ferro, L. Battezzati, M. Baricco: Intermetallics 12(12) (2004) 1367.10.1016/j.intermet.2004.04.035Search in Google Scholar

[23] Q. Guo, O.J. Kleppa: J. Alloys Compd. 270 (1998) 212.10.1016/S0925-8388(98)00509-XSearch in Google Scholar

[24] W. Coene, P.H.L. Notten, F. Hakkens, R.E.F. Einerhand, J.L.C. Daams: Phil. Mag. A 65(6) (1992) 1485.10.1080/01418619208205618Search in Google Scholar

[25] N. Marzouk, R.S. Craig, W.E. Wallace: J. Phys. Chem. Solids 34 (1973) 15.10.1016/0022-3697(73)90057-7Search in Google Scholar

[26] W.E. Wallace: Rare Earth Intermetallics. New York: Academic Press (1973) 111.10.1016/B978-0-12-732850-8.50014-3Search in Google Scholar

[27] I.V. Nikolaenko, O.V. Vlasova: Rasplavy 4 (1992) 79.Search in Google Scholar

[28] V.S. Sudavtsova, Yu.G. Gorobets, G.I. Batalin: Rasplavy 2(6) (1988) 79.Search in Google Scholar

[29] Z. Du, L. Yang, G. Ling: J. Alloys Compd. 375 (2004) 186.10.1016/j.jallcom.2003.11.157Search in Google Scholar

[30] J.L. Deneuville: PhD thesis, Institut National Polytechnique de Grenoble (France) (1975).Search in Google Scholar

[31] A.T. Dinsdale: Calphad 15 (1991) 317.10.1016/0364-5916(91)90030-NSearch in Google Scholar

[32] A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, Y. Dessureault: Met. Trans. B 31 (2000) 651.10.1007/s11663-000-0103-2Search in Google Scholar

[33] M. Hillert: J. Alloys Compd. 320 (2001) 161.10.1016/S0925-8388(00)01481-XSearch in Google Scholar

[34] I. Ansara, T.G. Chart, A. Femandez Guillermet, F.H. Hayes, U.R. Kattner, D.G. Pettifor, N. Saunders, K. Zeng: Calphad 21 (1997) 171.10.1016/S0364-5916(97)00021-7Search in Google Scholar

[35] C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melançon, A.D. Pelton, S. Petersen: Calphad 26(2) (2002) 189.10.1016/S0364-5916(02)00035-4Search in Google Scholar

[36] C. Chatillon-Colinet, H. Diaz, J.C. Mathieu, A. Percheron-Guegan, J.C. Achard: Ann. Chim. (Paris) 8 (1979) 657.Search in Google Scholar

[37] A. Pasturel, C. Chatillon-Colinet, A. Percheron-Guégan, J.C. Achard: J. Less-Common Met. 90 (1983) 21.10.1016/0022-5088(83)90112-1Search in Google Scholar

[38] H. Okamoto: J. Phase Equilibria 12(6) (1991) 623.10.1007/BF02645160Search in Google Scholar

Received: 2005-11-02
Accepted: 2006-02-14
Published Online: 2022-01-11

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
  3. Evolution of C-rich SiOC ceramics
  4. Evolution of C-rich SiOC ceramics
  5. Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
  6. Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
  7. Thermodynamic modelling of the Ce–Ni system
  8. Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
  9. Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
  10. Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
  11. Reconstruction and structural transition at metal/diamond interfaces
  12. Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
  13. High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
  14. Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
  15. XRD and TEM study of NiO–LSGM reactivity
  16. Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
  17. Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
  18. Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
  19. Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
  20. Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
  21. On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
  22. Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
  23. Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
  24. The Na–H system: from first-principles calculations to thermodynamic modeling
  25. Personal
  26. Conferences
  27. Frontmatter
  28. Basic
  29. Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
  30. Evolution of C-rich SiOC ceramics
  31. Evolution of C-rich SiOC ceramics
  32. Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
  33. Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
  34. Thermodynamic modelling of the Ce–Ni system
  35. Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
  36. Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
  37. Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
  38. Reconstruction and structural transition at metal/diamond interfaces
  39. Applied
  40. Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
  41. High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
  42. Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
  43. XRD and TEM study of NiO–LSGM reactivity
  44. Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
  45. Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
  46. Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
  47. Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
  48. Regular Articles
  49. Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
  50. On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
  51. Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
  52. Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
  53. The Na–H system: from first-principles calculations to thermodynamic modeling
  54. Notifications
  55. Personal
  56. Conferences
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0119/html
Scroll to top button