Home Evolution of C-rich SiOC ceramics
Article
Licensed
Unlicensed Requires Authentication

Evolution of C-rich SiOC ceramics

Part II. Characterization by high lateral resolution techniques: electron energy-loss spectroscopy, high-resolution TEM and energy-filtered TEM
  • Giuliano Gregori , Hans-Joachim Kleebe EMAIL logo , Yigal D. Blum and Florence Babonneau
Published/Copyright: January 11, 2022
Become an author with De Gruyter Brill

Abstract

In this Part II of the paper on the evolution of carbon-rich Si–O–C polymer-derived ceramics (PDCs), emphasis is placed on the strengths and limitations of transmission electron microscopy (TEM) techniques with high lateral resolution, i. e., electron energy-loss spectroscopy (EELS), high-resolution TEM (HRTEM) and energy-filtered TEM (EFTEM). Here, the identical SiOC materials, as described in Part I. EELS studies confirmed the progression of structural rearrangements within the SiOC matrix temperatures exceeding 1200 °C. High-resolution TEM imaging showed that the SiOC matrices are indeed predominantly amorphous even upon high thermal treatment. Energy-filtered TEM analysis revealed, in contrast to the results obtained by Raman spectroscopy (Part I), that the excess free carbon phase undergoes a pronounced rearrangement within the amorphous microstructure. HRTEM characterization revealed the distribution of phases within the amorphous SiOC matrix; information that is not accessible by integral spectroscopic techniques. Discrepancies between the interpretation of experimental results obtained by local versus integral characterization tools are discussed in detail.


Hans-Joachim Kleebe Darmstadt, University of Technology Institute of Geo-Materials Science Schnittspahnstr. 9, D-64287 Darmstadt, Germany Tel.: +49 6151 164 554 Fax: +49 6151 164 021

Dedicated to Professor Dr. Fritz Aldinger on the occasion of his 65th birthday


  1. Part of the reported work is an ongoing collaboration between SRI International and Colorado School of Mines, currently funded by the Ceramics Program at the National Science Foundation (NSF), contract No. DMR-0304968. The European Commission, the ORNL-SURA Program and the German Science Foundation (DFG) have also provided financial support for this research project.

References

[1] W. Verbeek, G. Winter: (in German), German Pat. No. 2236078 (1974).Search in Google Scholar

[2] S. Yajima, K. Okamura, J. Hayashi, M. Omori: J. Am. Ceram. Soc. 59 [7–8] (1976) 324.10.1111/j.1151-2916.1976.tb10975.xSearch in Google Scholar

[3] G. Yu, M.J. Ediringshe, D.S. Finch, B. Ralph, J. Parrick: J. Eur. Ceram. Soc. 15 (1995) 581.10.1016/0955-2219(95)00011-ISearch in Google Scholar

[4] T. Vaahs, M. Brück, W.D.G. Böcker: Adv. Mater. 4 [3] (1992) 224.10.1002/adma.19920040314Search in Google Scholar

[5] J. Bill, D. Heimann: J. Eur. Ceram. Soc. 16 (1996) 1115.10.1016/0955-2219(96)00025-8Search in Google Scholar

[6] M.R. Mucalo, N.B. Milestone, I.C. Vickridge, M.V. Swain, J. Mater Sci. 29 (1994) 4487.10.1007/BF00376271Search in Google Scholar

[7] R. Riedel, H.-J. Kleebe, H. Schönfelder, F. Aldinger: Nature 374 (1995) 526.10.1038/374526a0Search in Google Scholar

[8] M. Monthioux, O. Delverdier: J. Eur. Ceram. Soc. 16, (1996) 721.10.1016/0955-2219(95)00186-7Search in Google Scholar

[9] J. Bill, F. Aldinger: Adv. Mater. 7 [9] (1995) 775.10.1002/adma.19950070903Search in Google Scholar

[10] J. Lücke, J. Hacker, D. Suttor, G. Ziegler: Appl. Organometal. Chem. 11 (1997) 184.10.1002/(SICI)1099-0739(199702)11:2<181::AID-AOC566>3.0.CO;2-QSearch in Google Scholar

[11] J. Bill, J. Schuhmacher, K. Müller, S. Schempp, J. Seitz, J. Dürr, H.P. Lamparter, J. Golczewski, J. Peng, H.J. Seifert, F. Aldinger: Z. Metallkd. 91 [4] (2000) 335.10.1515/ijmr-2000-910416Search in Google Scholar

[12] M. Amkreutz, T. Frauenheim: Phys. Rev. B 65 (2002) 134113.10.1103/PhysRevB.65.134113Search in Google Scholar

[13] M. Frieß, J. Bill, J. Golczewski, A. Zimmermann, F. Aldinger, R. Riedel, R. Raj: J. Am. Ceram. Soc. 85 [10] (2002) 2587.10.1111/j.1151-2916.2002.tb00503.xSearch in Google Scholar

[14] J. Bill, T.W. Kamphowe, A. Müller, T.Wichmann, A. Zern, A. Jalowieki, J. Mayer, M. Weinmann, J. Schuhmacher, K. Müller, J. Peng, H.-J. Seifert, F. Aldinger: Appl. Organometal. Chem. 15 (2001) 777.10.1002/aoc.242Search in Google Scholar

[15] Z.C. Wang, P. Gerstel, G. Kaiser, H. Kummer, J. Bill, F. Aldinger, R. Riedel: Chemistry Letters 4 (2001) 296.10.1246/cl.2001.296Search in Google Scholar

[16] Z.C. Wang, F. Aldinger, R. Riedel: J. Am. Ceram. Soc. 84 (2001) 2179.10.1111/j.1151-2916.2001.tb00984.xSearch in Google Scholar

[17] G.M. Renlund, S. Prochazka, R.H. Doremus: J. Mater. Res. 6 [12] (1991) 2716.10.1557/JMR.1991.2716Search in Google Scholar

[18] G.D. Sorarù, E. Dallapiccola, G. D’Andrea: J. Am. Ceram. Soc. 79 (1996) 2074.10.1111/j.1151-2916.1996.tb08939.xSearch in Google Scholar

[19] C.G. Pantano, A.K. Singh, H. Zhang: J. Sol-Gel Sci. and Technol. 14 (1999) 7.10.1023/A:1008765829012Search in Google Scholar

[20] H. Zhang, C.G. Pantano: J. Am. Ceram. Soc. 73 (1990) 958.10.1111/j.1151-2916.1990.tb05143.xSearch in Google Scholar

[21] M. Hammond, E. Breval, C.G. Pantano: Ceram. Eng. & Sci. Proc. 14 (1993) 947.10.1002/9780470314234.ch32Search in Google Scholar

[22] G.D. Sorarù, F. Babonneau, J.D. Mackenzie: J. Non-Cryst. Solids 106 (1988) 256.10.1016/0022-3093(88)90270-0Search in Google Scholar

[23] M.A. Schiavon, G.D. Soraru, I.V.P. Yoshida: J. Non-Cryst. Solids 304 (2002) 76.10.1016/S0022-3093(02)01007-4Search in Google Scholar

[24] E. Breval, M. Hammond, C.G. Pantano: J. Am. Ceram. Soc. 77 [11] (1994) 3012.10.1111/j.1151-2916.1994.tb04538.xSearch in Google Scholar

[25] H.-J. Kleebe, C. Turquat, G.D. Sorarù: J. Am. Ceram. Soc. 84 [5] (2001) 1073.10.1111/j.1151-2916.2001.tb00792.xSearch in Google Scholar

[26] G.D. Sorarù: Sol-Gel Sci. Technol. 2 (1994) 843.10.1007/BF00486362Search in Google Scholar

[27] T. Rouxel, G. Massouras, G.D. Sorarù: J. Sol-Gel Sci. Technol. 14 (1999) 83.10.1023/A:1008779915809Search in Google Scholar

[28] R. Bodet, N. Jia, R.E. Tressler: J. Eur. Ceram. Soc. 16 (1996) 653.10.1016/0955-2219(95)00178-6Search in Google Scholar

[29] R. Riedel, L.M. Ruswisch, L.N. An, R. Raj: J. Am. Ceram. Soc. 81 (1998) 334.10.1111/j.1151-2916.1998.tb02780.xSearch in Google Scholar

[30] H.-J. Kleebe, D. Suttor, H. Müller, G. Ziegler: J. Am Ceram. Soc. 81 [11] (1998) 2971.10.1111/j.1151-2916.1998.tb02722.xSearch in Google Scholar

[31] H.-J. Kleebe, H. Störmer, S. Trassl, G. Ziegler: Appl. Organomet. Chem. 15 (2001) 858.10.1002/aoc.243Search in Google Scholar

[32] S. Traßl, D. Suttor, G. Motz, E. Rössler, G. Ziegler: J. Eur. Ceram. Soc. 20 (2000) 215.10.1016/S0955-2219(99)00142-9Search in Google Scholar

[33] S. Traßl, G. Motz, E. Rössler, G. Ziegler: J. Am. Ceram. Soc. 85 [1] (2002) 239.10.1111/j.1151-2916.2002.tb00072.xSearch in Google Scholar

[34] S. Traßl, H.-J. Kleebe, D. Störmer, G. Motz, E. Rössler, G. Ziegler: J. Am. Ceram. Soc. 85 [5] (2002) 1268.10.1111/j.1151-2916.2002.tb00256.xSearch in Google Scholar

[35] G. Gregori, H.-J. Kleebe, H. Brequel, S. Enzo, G. Ziegler: J. Non-Crystall. Solids 351 [16–17] (2005) 1393.10.1016/j.jnoncrysol.2005.03.025Search in Google Scholar

[36] C. Turquat, H.-J. Kleebe, G. Gregori, S. Walter, G.D. Sorarù: J. Am. Ceram. Soc. 84 [10] (2001) 2189.10.1111/j.1151-2916.2001.tb00986.xSearch in Google Scholar

[37] G. Gregori, H.-J. Kleebe, G.D. Sorarù: J. Am. Ceram. Soc. (2006) in press.Search in Google Scholar

[38] J. Bentley: Microsc. Microanal. 6 [2] (2000) 1186.10.1017/S1431927600038423Search in Google Scholar

[39] T. Walther: Ultramicroscopy 96 (2003) 401.10.1016/S0304-3991(03)00104-9Search in Google Scholar

[40] F. Hofer, in: A.W. Robards, A.J. Wilson (Eds.), J. Wiley & Sons, Chichester, New York (1993) 15.3.1.Search in Google Scholar

[41] F. Hofer, in: L. Reimer (Ed.), Springer-Verlag, Berlin –Heidelberg–New York (1995) 225.Search in Google Scholar

[42] S. Amelinckx, A. Lucas, P. Lambin: Rep. Prog. Phys. 62 (1999) 1471.10.1088/0034-4885/62/11/201Search in Google Scholar

[43] A. Zern, J. Mayer, J. Narayanan, M.Weinmann, J. Bill, M. Rühle: J. Eur. Ceram. Soc. 22 (2002) 1621.10.1016/S0955-2219(01)00443-5Search in Google Scholar

[44] A. Scarmi, G.D. Sorarù, R. Raj: J. Non-Cryst. Solids (2006), in press.Search in Google Scholar

Received: 2005-11-05
Accepted: 2006-02-11
Published Online: 2022-01-11

© 2006 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
  3. Evolution of C-rich SiOC ceramics
  4. Evolution of C-rich SiOC ceramics
  5. Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
  6. Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
  7. Thermodynamic modelling of the Ce–Ni system
  8. Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
  9. Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
  10. Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
  11. Reconstruction and structural transition at metal/diamond interfaces
  12. Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
  13. High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
  14. Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
  15. XRD and TEM study of NiO–LSGM reactivity
  16. Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
  17. Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
  18. Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
  19. Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
  20. Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
  21. On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
  22. Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
  23. Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
  24. The Na–H system: from first-principles calculations to thermodynamic modeling
  25. Personal
  26. Conferences
  27. Frontmatter
  28. Basic
  29. Microstructure and mechanical behavior of Pt-modified NiAl diffusion coatings
  30. Evolution of C-rich SiOC ceramics
  31. Evolution of C-rich SiOC ceramics
  32. Nanostructured SiC/BN/C ceramics derived from mixtures of B3N3H6 and [HSi(Me)C≡C]n
  33. Thermodynamic analysis of structural transformations induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors
  34. Thermodynamic modelling of the Ce–Ni system
  35. Thermodynamic assessment of the Ce–O system in solid state from 60 to 67 mol.% O
  36. Phase transformations of iron nitrides at low temperatures (< 700 K) – application of mechanical mixtures of powders of nitrides and iron
  37. Effect of organic self-assembled monolayers on the deposition and adhesion of hydroxyapatite coatings on titanium
  38. Reconstruction and structural transition at metal/diamond interfaces
  39. Applied
  40. Microstructure, hardness, and fracture toughness evolution of hot-pressed SiC/Si3N4 nano/micro composite after high-temperature treatment
  41. High-temperature plasticity of SiC sintered with Lu2O3-AlN additives
  42. Interaction of functionalised surfaces on silica with dissolved metal cations in aqueous solutions
  43. XRD and TEM study of NiO–LSGM reactivity
  44. Microstructure and dielectric properties of nanoscale oxide layers on sintered capacitor-grade niobium and V-doped niobium powder compacts
  45. Knudsen effusion mass spectrometric studies of the Al–Ni system: Thermodynamic properties over {AlNi + Al3Ni2} and {Al3Ni2 + Al3Ni}
  46. Aqueous solution deposition of indium hydroxide and indium oxide columnar type thin films
  47. Thermodynamic properties of B2-AlFeNi alloys: modelling of the B2-AlFe and B2-AlNi phases
  48. Regular Articles
  49. Kinetics of precipitate formation in (TixWyCrz)B2 solid solutions: influence of Cr concentration and Co impurities
  50. On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr702)
  51. Out-of-pile chemical compatibility of Pb–Bi eutectic alloy with Graphite
  52. Microstructural characterisation of a Co–Cr–Mo laser clad applied on railway wheels
  53. The Na–H system: from first-principles calculations to thermodynamic modeling
  54. Notifications
  55. Personal
  56. Conferences
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2006-0116/html
Scroll to top button