Startseite Technik Modeling of texture evolution in copper under equal channel angular pressing
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modeling of texture evolution in copper under equal channel angular pressing

  • Seung Chul Baik , Yuri Estrin EMAIL logo , Ralph Jörg Hellmig , Hyo-Tae Jeong , H.-G. Brokmeier und Hyoung Seop Kime
Veröffentlicht/Copyright: 5. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Texture evolution was analyzed with the full-constraint Taylor model for an idealized perfectly plastic face-centered cubic material as well as for real, strain-hardening copper subjected to equal channel angular pressing (ECAP). For the idealized material, the stress in the plastically deformed part of the billet was shown to be uniform leading to complete filling of the die. Finite element simulations showed that plastic deformation is localized in a narrow shear zone and that the plastic strain and texture in the billet become uniform after ECAP. A simplified recipe for texture calculation akin to that proposed by Gholinia et al. was suggested: it reduces the deformation under ECAP to a combination of two rotations separated by tension-compression. For the case of copper, a strain hardening model based on dislocation density evolution was used. It was shown that due to significant strain hardening during the first ECAP pass, the flowing material does not fill the outside die corner and a strain and texture non-uniformity develops. A gradual decrease of the strain hardening in subsequent ECAP passes leads to a more uniform strain and texture across the billet. The simulated pole figures were shown to be in good agreement with the neutron diffraction data for copper deformed by ECAP (Routes A, Cr, Bγ and Bcr) suggesting that the model used provides a reliable modeling tool for simulating texture evolution under ECAP.


Prof. Dr. Juri Estrin Institut für Werkstoffkunde und Werkstofftechnik Technische Universität Clausthal Agricolastr. 6, D-38678 Clausthal-Zellerfeld, Germany Tel.: +49 5323 722 004 Fax: +49 5323 723 148

  1. Financial support from the Deutsche Forschungsgemeinschaft under grant ES 74/9-1 is gratefully acknowledged. Partial support from Ministry of Science and Culture of Lower Saxony through a research fellowship (Seung Chul Baik) is appreciated. Hyoung Seop Kim acknowledges funding received from Korea Research Foundation through Grant KRF-2001-041-E00418. The authors thank the GKSS Research Center Geesthacht GmbH for support in neutron diffraction measurements at the Research Reactor FRG-1 funded by the German Ministry of Education and Research under the contract number 03BRE8CL. Useful discussions with Sangbong Yi and Min Hong Seo are gratefully appreciated.

References

[1] S.C. Baik, R.J. Hellmig, Y. Estrin, H.S. Kim: Z. Metallkd. 94 (2003) 754.10.3139/146.030754Suche in Google Scholar

[2] V.M. Segal: USSR Patent No. 575892 (1977).Suche in Google Scholar

[3] V.M. Segal, V. Reznikov, A. Drobyshevkiy, V. Kopylov: Russia Metall. 1 (1981) 99.Suche in Google Scholar

[4] V.M. Segal: Mater. Sci. Eng. A 197 (1995) 157.10.1016/0921-5093(95)09705-8Suche in Google Scholar

[5] R. Goforth, K.T. Hartwig, L. Cornwell, in: T. Lowe, R. Valiev (Eds.), Investigations and Applications of Severe Plastic Deformation, Kluwer Academic Publishers, Dordrecht (2000) 3.10.1007/978-94-011-4062-1_1Suche in Google Scholar

[6] Y. Zhu, T. Lowe: Mater. Sci. Eng. A 291 (2000) 46.10.1016/S0921-5093(00)00978-3Suche in Google Scholar

[7] D.A. Hughes, N. Hansen: Acta Mater. 45 (1997) 3871.10.1016/S1359-6454(97)00027-XSuche in Google Scholar

[8] W. Huang, L. Chang, P. Kao, C. Chang: Mater. Sci. Eng. A 307 (2001) 113.10.1016/S0921-5093(00)01881-5Suche in Google Scholar

[9] U. Chakkingal, A.B. Suriadi, P.F. Thomson: Mater. Sci. Eng. A 226 (1999) 241.10.1016/S0921-5093(98)01129-0Suche in Google Scholar

[10] A. Gholinia, P. Bate, P.B. Prangnell: Acta Mater. 50 (2002) 2121.10.1016/S1359-6454(02)00055-1Suche in Google Scholar

[11] U.F. Kocks, C.N. Tomé, H.-R. Wenk: Texture and Anisotropy, Cambridge University Press (1998).Suche in Google Scholar

[12] F. Montheillet, P. Gilormini, J.J. Jonas, Acta Metall. 33 (1985) 705.10.1016/0001-6160(85)90035-5Suche in Google Scholar

[13] L.S. Tóth, P. Gilormini, J.J. Jonas, Acta Metall. 36 (1988) 3077.10.1016/0001-6160(88)90045-4Suche in Google Scholar

[14] H.S. Kim, M. H. Seo, S.I. Hong: Mater. Sci. Eng. A 291 (2000) 86.10.1016/S0921-5093(00)00970-9Suche in Google Scholar

[15] H.S. Kim, S.I. Hong, M.H. Seo: J. Mater. Res. 16 (2001) 856.10.1557/JMR.2001.0113Suche in Google Scholar

[16] G.L. Taylor: J. Inst. Metals 63 (1938) 307.10.1039/an9386300307Suche in Google Scholar

[17] Y. Estrin, L.S. Tóth, A. Molinari, Y. Bréchet: Acta Mater. 46 (1998) 5509.10.1016/S1359-6454(98)00196-7Suche in Google Scholar

[18] L.S. Tóth, A. Molinari, Y. Estrin: J. Eng. Mater. Technol. 124 (2002) 71.10.1115/1.1421350Suche in Google Scholar

[19] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon: Mater. Sci. Eng. A 257 (1998) 328.10.1016/S0921-5093(98)00750-3Suche in Google Scholar

[20] S. Ferrasse, V.M. Segal, K.T. Hartwig, R.E. Goforth: Metall Mater. Trans. A 28 (1997) 1047.10.1007/s11661-997-0234-zSuche in Google Scholar

[21] H.-G. Brokmeier, U. Zink, R. Schnieber, B. Witassek: Mater. Sci. Forum 273 (1998) 277.10.4028/www.scientific.net/MSF.273-275.277Suche in Google Scholar

[22] P. Van Houtte: in: S. Nagashima (Ed.), Proc. of ICOTOM 6, The Iron and Steel Institute of Japan, Tokyo (1981) 128.Suche in Google Scholar

[23] L.E. Malvern: Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Englewood Cliffs (1969).Suche in Google Scholar

Received: 2003-03-31
Published Online: 2022-02-05

© 2003 Carl Hanser Verlag, München

Heruntergeladen am 2.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0217/html?lang=de
Button zum nach oben scrollen