Home Dislocation structure and crystallite size distribution in plastically deformed Ti determined by X-ray peak profile analysis
Article
Licensed
Unlicensed Requires Authentication

Dislocation structure and crystallite size distribution in plastically deformed Ti determined by X-ray peak profile analysis

  • J. Gubicza , I. C. Dragomir , G. Ribárik , S. C. Baik , Y. T. Zhu , R. Z. Valiev and T. Ungár EMAIL logo
Published/Copyright: February 5, 2022
Become an author with De Gruyter Brill

Abstract

Ultrafine-grained titanium produced by equal channel angular pressing and subsequent cold rolling is studied by X-ray diffraction. It is found that a texture exists in which the hexagonal basal planes are parallel to the longitudinal axis of the billet. The crystallite size distribution and the dislocation structure are determined by X-ray diffraction peak profile analysis. The median and the variance of the crystallite size distribution are obtained as m = 39 nm and σ = 0.14, respectively. The dislocation model of anisotropic broadening of peak profiles enables to determine the active slip systems. It was found that all three possible hexagonal Burgers vectors of dislocations exist, with the composition of 66% <a> type, 33% <c> type and 1% <c + a> type.


Prof. Tamas Ungar Department of General Physics Eotvos University Budapest, P. O. Box 32, H-1518, Hungary Tel.: +36 1 372 2801 Fax: +36 1 372 2811

  1. Thanks are due to Dr R. J. Hellmig for his kind assistance in performing the texture measurements. This work was supported by the Hungarian Scientific Research Fund, OTKA, Grant Nos. T031786, T034666 and T029701 as well as the NIS-IPP program in the US Department of Energy. J.G. is grateful for the financial support of Magyary Zoltán Postdoctoral Programme of Foundation for Hungarian Higher Education and Research (AMFK). Y.T.Z. and R.Z.V. acknowledge the support of US DOE IPP program.

References

[1] R.Z. Valiev, R.K. Ishlamgaliev, I.V. Alexandrov: Progr. Mater. Sci. 45 (2000) 103.10.1016/S0079-6425(99)00007-9Search in Google Scholar

[2] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev: Mater. Sci. Eng. A 299 (2001) 59.10.1016/S0921-5093(00)01411-8Search in Google Scholar

[3] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev: Mater. Sci. Eng. A 303 (2001) 82.10.1016/S0921-5093(00)01884-0Search in Google Scholar

[4] D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, R.Z. Valiev: Appl. Phys. Lett. 79 (2001) 611.10.1063/1.1384000Search in Google Scholar

[5] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev: Mater. Sci. Eng. A 343 (2003) 43.10.1016/S0921-5093(02)00366-0Search in Google Scholar

[6] G.K. Williamson, W.H. Hall: Acta Metall. 1 (1953) 22.10.1016/0001-6160(53)90006-6Search in Google Scholar

[7] B.E. Warren, B.L. Averbach: J. Appl. Phys. 21 (1950) 595.10.1063/1.1699713Search in Google Scholar

[8] B.E. Warren: Progr. Metal Phys. 8 (1959) 147.10.1016/0502-8205(59)90015-2Search in Google Scholar

[9] G. Caglioti, A. Paoletti, F.P. Ricci: Nucl. Instrum. 3 (1958) 223.10.1016/0369-643X(58)90029-XSearch in Google Scholar

[10] A. Le Bail, in: E. Prince, J.K. Stalick (Eds.), Accuracy in Powder Diffraction II, NIST Special Publication, Washington DC, No. 846 (1992) 142.Search in Google Scholar

[11] M.A. Krivoglaz: Theory of X-ray and Thermal Neutron Scattering by Real Crystals, Plenum Press, New York (1996).10.1007/978-1-4899-5582-1Search in Google Scholar

[12] M. Wilkens: Phys. Stat. Sol. (a) 2 (1970) 359.10.1002/pssa.19700020224Search in Google Scholar

[13] M. Wilkens, in: J.A. Simmons, R. de Wit, R. Bullough (Eds.), Fundamental Aspects of Dislocation Theory, Vol. II, Nat. Bur. Stand. (US) Spec. Publ. No. 317, Washington, DC (1970) 1195.Search in Google Scholar

[14] R. Kuzel jr., P. Klimanek: J. Appl. Cryst. 22 (1989) 299.10.1107/S0021889889001585Search in Google Scholar

[15] T. Ungár, A. Borbély: Appl. Phys. Lett. 69 (1996) 3173.10.1063/1.117951Search in Google Scholar

[16] D. Balzar: J. Res. Nat. Inst. Stand. Technol. 98 (1993) 321.10.6028/jres.098.026Search in Google Scholar

[17] J.I. Langford, D. Louër, P. Scardi: J. Appl. Cryst. 33 (2000) 964.10.1107/S002188980000460XSearch in Google Scholar

[18] P. Scardi, M. Leoni: Acta Cryst. A 58 (2002) 190.10.1107/S0108767301021298Search in Google Scholar

[19] T. Ungár, J. Gubicza, G. Ribárik, A. Borbély: J. Appl. Cryst. 34 (2001) 298.10.1107/S0021889801003715Search in Google Scholar

[20] G. Ribárik, T. Ungár, J. Gubicza: J. Appl. Cryst. 34 (2001) 669.10.1107/S0021889801011451Search in Google Scholar

[21] I.C. Dragomir, T. Ungár: J. Appl. Cryst. 35 (2002) 556.10.1107/S0021889802009536Search in Google Scholar

[22] W.C. Hinds: Aerosol Technology: Properties, Behavior and Measurement of Airborne Particles, Wiley, New York (1982).Search in Google Scholar

[23] S. Zaefferer: Mater. Sci. Eng. A 344 (2003) 20.10.1016/S0921-5093(02)00421-5Search in Google Scholar

[24] Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungár, Y.M. Wang, E. Ma, R.Z. Valiev: J. Mater. Res., to be submitted.Search in Google Scholar

[25] I.P. Jones, W. B. Hutchinson: Acta Metall. 29 (1981) 951.10.1016/0001-6160(81)90049-3Search in Google Scholar

[26] S. Naka, A. Lasalmonie, P. Costa, L.P. Kubin: Phil. Mag. A 57 (1988) 717.10.1080/01418618808209916Search in Google Scholar

[27] S. Farenc, D. Caillard, A. Couret: Acta Metall. Mater. 41 (1993) 2701.10.1016/0956-7151(93)90139-JSearch in Google Scholar

[28] A.R. Smirnov, V.A. Moskalenko: Mater. Sci. Eng. A 327 (2002) 138.10.1016/S0921-5093(01)01648-3Search in Google Scholar

[29] D.R. Chichili, K.T. Ramesh, K.J. Hemker: Acta Mater. 46 (1998) 1025.10.1016/S1359-6454(97)00287-5Search in Google Scholar

[30] A. Girschick, D.G. Pettifor, V. Vitek: Phil. Mag. A 77 (1998) 999.10.1080/01418619808221224Search in Google Scholar

Received: 2003-03-03
Published Online: 2022-02-05

© 2003 Carl Hanser Verlag, München

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0216/html
Scroll to top button