Home Grain boundary diffusion and segregation of Ge in Cu: Radiotracer measurements in different kinetic regimes
Article
Licensed
Unlicensed Requires Authentication

Grain boundary diffusion and segregation of Ge in Cu: Radiotracer measurements in different kinetic regimes

  • M. Lohmann , S. Divinski EMAIL logo and Chr. Herzig
Published/Copyright: February 5, 2022
Become an author with De Gruyter Brill

Abstract

Grain boundary (GB) solute diffusion of Ge in Cu polycrystals was systematically investigated by the radiotracer serial sectioning technique using 68Ge and 71Ge isotopes. The diffusion measurements were carried out under conditions of Harrison’s B- (923–626 K) and C- (576–451 K) type diffusion regimes. In the B-type diffusion regime, the triple product P = sδDgb (s is the segregation factor and δ the GB width) was found to follow the Arrhenius law P = 4:0 × 10-16 × exp(-58.6 kJ mol-1/RTÞ m3s-1, where R is the universal gas constant and T the temperature. Measurements in the C-regime directly yielded the GB diffusion coefficient Dgb, Dgb = 2.8 × 10-6 × exp(-84.8 kJ mol-1/RTÞ m2s-1. Combining the obtained P and Dgb values and assuming δ ≌ 5 × 10-10 m, the GB segregation factor for Ge in Cu was determined to follow an Arrhenius dependence s = 0.29 exp(26 kJmol-1/RTÞ. The determined segregation coefficients s are discussed together with previous results on solute segregation in Cu and Ag, and it is concluded that the well-known Hondros relation, which relates segregation and bulk solute solubility, can generally be used only for a qualitative estimation of the segregation ability. Furthermore, the obtained results for the triple product sδDgb and the directly measured Dgb values are discussed in relation to previous GB diffusion measurements of some other solutes in Cu and Ag in the B- and C-regimes.


Dr. Sergiy Divinski Institut für Materialphysik Münster University Wilhelm-Klemm-Str. 10, D-48149 Münster, Germany Tel.: +49 2 51 83 3 90 30 Fax: +49 2 51 83 3 83 46

  1. The present investigation was supported by funds of the Deutsche Forschungsgemeinschaft (Project No. He848/24 –1). The 71Ge isotope production at the reactor of the GKSS Geesthacht, Germany is greatly acknowledged.

References

[1] P. Gas, D.L. Beke, J. Bernardini: Phil. Mag. Lett. 65 (1992) 133.10.1080/09500839208207526Search in Google Scholar

[2] J. Sommer, Chr. Herzig: J. Appl. Phys. 72 (1992) 2758.10.1063/1.352328Search in Google Scholar

[3] S.V. Divinski, M. Lohmann, Chr. Herzig: Acta Mater. 49 (2001) 249.10.1016/S1359-6454(00)00304-9Search in Google Scholar

[4] T. Surholt, Y. Mishin, Chr. Herzig: Phys. Rev. B 50 (1994) 3577.10.1103/PhysRevB.50.3577Search in Google Scholar

[5] T. Surholt, C. Minkwitz, Chr. Herzig: Acta Mater. 46 (1998) 1849.10.1016/S1359-6454(97)00437-0Search in Google Scholar

[6] Chr. Herzig, J. Geise, Y. Mishin: Acta Metall. Mater. 41 (1993) 1683.10.1016/0956-7151(93)90187-WSearch in Google Scholar

[7] A. Atkinson, R.I. Taylor: Phil. Mag. A 43 (1981) 979.10.1080/01418618108239506Search in Google Scholar

[8] M.P. Seah, E.D. Hondros: Proc. Roy. Soc. London A 335 (1973) 191.10.1098/rspa.1973.0121Search in Google Scholar

[9] S.V. Divinski, M. Lohmann, Chr. Herzig: Interface Sci. 11 (2003) 21.10.1023/A:1021522620571Search in Google Scholar

[10] T.B. Massalski (Editor-in-Chief): Binary Alloy Phase Diagrams, Vol. 1, Am. Soc. Metals, Metals Park, Ohio (1986).Search in Google Scholar

[11] I. Kaur, Y. Mishin, W. Gust: Fundamentals of Grain and Interphase Boundary Diffusion, Wiley, Chichester (1995).Search in Google Scholar

[12] F.D. Reinke, C.E. Dahlström: Phil. Mag. 22 (1970) 57.10.1080/14786437008228150Search in Google Scholar

[13] T. Suzuoka: J. Phys. Soc. Japan 19 (1964) 839.10.1143/JPSJ.19.839Search in Google Scholar

[14] P. Lejcek, S. Hofmann: Surf. Interface Anal. 33 (2002) 203.10.1002/sia.1203Search in Google Scholar

[15] C.L. Briant: Phil. Mag. Lett. 73 (1996) 345.10.1080/095008396180614Search in Google Scholar

[16] D. McLean: Grain Boundaries in Metals, Clarendon Press, Oxford (1957).Search in Google Scholar

[17] T. Surholt, Chr. Herzig: Acta Mater. 45 (1997) 3817.10.1016/S1359-6454(97)00037-2Search in Google Scholar

[18] S.M. Klotsman, Y.A. Rabovskiy, V.K. Talinskiy, A.N. Timofeyev: Phys. Met. Metallogr. 29 (1970) 127.Search in Google Scholar

[19] W. Gust, M.B. Hintz, A. Lodding, R. Lucic, H. Odelius, U. Roll: Microchemica Acta 9 (1981) 202.Search in Google Scholar

[20] P. Spindler, K. Nachtrieb: Met. Trans. A 9 (1978) 763.10.1007/BF02649785Search in Google Scholar

[21] G.E. Moya–Gontier, F. Moya: Acta metall. 21 (1973) 701.10.1016/0001-6160(73)90080-1Search in Google Scholar

[22] T. Surholt: Ph.D. Thesis, University of Münster (1997).Search in Google Scholar

[23] J. Hino, C. Tomizuka, C. Wert: Acta metall. 5 (1957) 41.10.1016/0001-6160(57)90153-0Search in Google Scholar

Received: 2003-07-31
Published Online: 2022-02-05

© 2003 Carl Hanser Verlag, München

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2003-0214/html
Scroll to top button