Startseite Influence of Microstructure and Impurities on Thermal Conductivity of Aluminium Nitride Ceramics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of Microstructure and Impurities on Thermal Conductivity of Aluminium Nitride Ceramics

  • Stefan Ruckmich EMAIL logo
Veröffentlicht/Copyright: 11. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The microstructure of AlN ceramics, which were pressureless sintered with CaO and CaF2 as additives, was modified via an annealing process. The thermal conductivity of these samples was measured and correlated with the microstructure changes. The influence of the microstructural elements, especially content and distribution of secondary phases, is described and quantitatively related to mixture models from literature for a full understanding of the relationships between microstructure, impurity content and thermal conductivity. The main result of the investigation is that the microstructural influence on thermal conductivity is limited to at maximum 41 W/m · K. The increase of the intrinsic thermal conductivity, due to loss of impurities especially oxygen during the beginning of the annealing process, is the main effect influencing thermal conductivity of sintered samples.


Dr. St. Ruckmich Infineon Technologies SC 300 GmbH & Co. KG Königsbrücker Str. 180, D-01099 Dresden, Germany

Dedicated to Professor Dr. Dr. h. c. mult. Günter Petzow on the occasion of his 75th birthday


References

1 Chanchani, R.: Adv. Ceramics 26 (1989) 77.10.1039/ap9892600077Suche in Google Scholar

2 Güther, H.-M.; Seitz, K.: Future: Das Hoechst Magazin 11 (1995) 28.Suche in Google Scholar

3 Takahashi, T.; Iwase, N.; Tsuge, A.; Nagata, M.: Adv. Ceramics 26 (1989) 159.Suche in Google Scholar

4 Jensen, R.H.; Bydal, B.A.; Button, D.P.: Adv. Ceramics 26 (1989) 339.Suche in Google Scholar

5 Cummings, K.A.; Risbud, S.H.: J. Phys. Chem. Solids 61 (2000) 551.10.1016/S0022-3697(99)00253-XSuche in Google Scholar

6 Sheppard, L.M.: Ceram. Bull. 69 (1990) 1801.Suche in Google Scholar

7 Kuramoto, N.; Taniguchi, Aso I.: Adv. Ceramics 26 (1989) 107.Suche in Google Scholar

8 Klemens, P.G.: Solid State Phys. 7 (1958) 1.10.1016/S0081-1947(08)60551-2Suche in Google Scholar

9 Carslaw, H.S.; Jaeger, J.C.: Conduction of Heat in Solids, Clarendon Press, Oxford (1996).Suche in Google Scholar

10 Holland, M.G.: Physics of III – V Compounds, Vol. 2, Academic Press, New York (1966).Suche in Google Scholar

11 Klemens, P.G.: Phys. Rev. 119 (1960) 507.10.1103/PhysRev.119.507Suche in Google Scholar

12 Abeles, B.: Phys. Rev. 131 (1963) 1906.10.1103/PhysRev.131.1906Suche in Google Scholar

13 Slack, G.A.: J. Phys. Chem. Solids 34 (1973) 321.10.1016/0022-3697(73)90092-9Suche in Google Scholar

14 Koto, K.; Schulz, H.: Acta Cryst. A 35 (1979) 971.10.1107/S0567739479002163Suche in Google Scholar

15 Kranzmann, A.E.: Ph. D. Thesis, University of Stuttgart (1988).Suche in Google Scholar

16 Miloh, T.; Benveniste, Y.: J. Appl. Phys. 63 (1988) 789.10.1063/1.340071Suche in Google Scholar

17 Hatta, H.; Taya, M.: J. Appl. Phys. 58 (1985) 2478.10.1063/1.335924Suche in Google Scholar

18 Hatta, H.; Taya, M.: J. Appl. Phys. 59 (1986) 1851.10.1063/1.336412Suche in Google Scholar

19 Ruckmich, S.: Ph. D. Thesis, University of Stuttgart (1993).Suche in Google Scholar

20 Ruckmich, S.; Kranzmann, A.; Bischoff, E.; Brook, R.J.: J. Europ. Ceram. Soc. 7 (1991) 335.10.1016/0955-2219(91)90112-DSuche in Google Scholar

21 Touloukian, Y.S. (eds.):Thermophysical Properties of Matter, Vol. 2, Thermal Conductivity of Nonmetallic Solids, IFI/Plenum, New York (1970).Suche in Google Scholar

22 Ueno, F.; Horiguchi, A., in: G. de With, R.A. Terpstra, R. Metselaar (eds.), Proc. ECerS89, Vol. 1, Elsevier Science, London (1989) 383.Suche in Google Scholar

23 Slack, G.A.; Tanzilli, R.A.; Pohl, R.O.; Vandersande, J.W.: J. Phys. Chem. Solids 48 (1987) 641.10.1016/0022-3697(87)90153-3Suche in Google Scholar

24 Kröger, F.A.; Vink, H.J., in: Solid State Physics, Vol. 3, Academic Press, New York (1956) 307.10.1016/S0081-1947(08)60135-6Suche in Google Scholar

Received: 2001-03-24
Published Online: 2022-02-11

© 2001 Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Frontmatter
  2. Editorial
  3. “No wise man ever wish to be younger”
  4. Aufsätze/Articles
  5. Entropy, Transformations and Sustainability of Industrial Life Cycles
  6. Positron Annihilation in Stable and Supercooled Metallic Melts
  7. Local Characterization of the Diffusion Process during Discontinuous Precipitation: A Review
  8. The Dependence of Abnormal Grain Growth on Initial Grain Size in 316 L Stainless Steel
  9. Diffusion-Controlled Grain Growth in Liquid-Phase Sintering of W–Cu Nanocomposites
  10. Evaluation of Densification Mechanisms of Liquid-Phase Sintering
  11. Phase Transformation of a Dual Phase Al–Fe Alloy Prepared by Mechanical Alloying
  12. Discrete Element Simulation of Ceramic Powder Processing
  13. Strain Relaxation and Internal Friction in the Range of the Glass Transition
  14. A Thermodynamic Model of an Amorphous Grain Boundary Phase in Liquid-Phase Sintered β-SiAlON Ceramic
  15. Epitaxial Growth of Metals on (100) SrTiO3: The Influence of Lattice Mismatch and Reactivity
  16. Microstructure and Modifications of Cu/Al2O3 Interfaces
  17. Structural Transformations Induced by Swift Heavy Ions in Polysiloxanes and Polycarbosilanes
  18. Metastable Al–Nd–Ni and Stable Al–La–Ni Phase Equilibria
  19. Phase Equilibria of the Al–Nd and Al–Nd–Ni Systems
  20. System Pr –Pd–O: Phase Diagram and Thermodynamic Properties of Ternary Oxides Using Solid-State Cells with Special Features
  21. Calculation of Phase Equilibria in Candidate Solder Alloys
  22. Thermodynamic Assessment of the Zr–O Binary System
  23. Delaminating Layered Oxide Composites with Wavy Interfaces
  24. Contemporary Materials Issues for Advanced EB-PVD Thermal Barrier Coating Systems
  25. Monte Carlo Simulations of Strength Distributions of Brittle Materials – Type of Distribution, Specimen and Sample Size
  26. On the Optimization of the Microstructure in Powder Metallurgical Ag–SnO2–In2O3 Contact Materials
  27. Some New Aspects of Microstructural Design of β-Si3N4 Ceramics
  28. Ni-Based SOFC Anodes: Microstructure and Electrochemistry
  29. Effect of Copper Line Geometry and Process Parameters on Interconnect Microstructure and Degradation Processes
  30. Thermal Stability of Nanoscale Co/Cu Multilayers
  31. Methods for Characterising the Precipitation of Nanometer-Sized Secondary Hardening Carbides and Related Effects in Tool Steels
  32. Prediction of Local Strain and Hardness in Sheet Forming
  33. Novel in situ-Infiltrated Al2O3-Metal Composites
  34. Influence of Microstructure and Impurities on Thermal Conductivity of Aluminium Nitride Ceramics
  35. Notifications/Mitteilungen
  36. Personelles/Personal
  37. Bücher/Books
  38. Tagungen/Conferences
Heruntergeladen am 10.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2001-0152/html
Button zum nach oben scrollen