Home Epitaxial Growth of Metals on (100) SrTiO3: The Influence of Lattice Mismatch and Reactivity
Article
Licensed
Unlicensed Requires Authentication

Epitaxial Growth of Metals on (100) SrTiO3: The Influence of Lattice Mismatch and Reactivity

  • T. Wagner EMAIL logo , A. D. Polli , G. Richter and H. Stanzick
Published/Copyright: February 11, 2022
Become an author with De Gruyter Brill

Abstract

The model system Me/(100) SrTiO3 (Me: Pd, Pt, Cu, Ni, Cr, Mo, Nb, and Al) was used to show that there exists a simple correlation between the formation of particular epitaxial orientations, the lattice mismatch between metal and SrTiO3, and the oxygen affinity of the metal. The growth of the metal films on the (100) SrTiO3 surface was studied by reflection high-energy electron diffraction. Most metals (Pd, Pt, Ni, Nb and Al) grew with the following epitaxial orientation relationship on the SrTiO3: (100) SrTiO3 | | (100) Me, [001] SrTiO3 | | [001] Me. A second epitaxial orientation relationship was detected for Cr and Mo: (100) SrTiO3 | | (100) Cr, Mo, [001] SrTiO3 | | [011] Cr, Mo. For Mo, this orientation was detected only at very high growth temperatures. For each of the epitaxial orientation relationships, the substrate and film planes of four fold symmetry were parallel. Besides the second epitaxial orientation relationship, a third epitaxial orientation relationship was detected for Mo at growth temperatures below 900 K: (100) SrTiO3 | | (110) Mo, [001] SrTiO3 | | [001] Mo. In contrast to all other metals under investigation, Cu grew with a (111) fiber texture on the (100) SrTiO3 surface. The appearance of the first two epitaxial orientation relationships can be interpreted with a simple relationship between the metals’ oxygen affinities and the lattice mismatches with SrTiO3. This relationship can be used for other metals to predict epitaxy on the (100) SrTiO3 surface.


Dr. Thomas Wagner Max-Planck-Institut für Metallforschung Seestr. 92, D-70174 Stuttgart, Germany Fax: +49 7 11 20 95 1 20

Dedicated to Professor Dr. Dr. h. c. mult. Günter Petzow on the occasion of his 75th birthday


References

1 Eshabini-Riad, A.A.R.; Barlow, F.D.: Thin Film Technology Handbook, McGraw-Hill, New York (1998).Search in Google Scholar

2 Brune, H.: Surf. Sci. Rep. 31 (1998) 121.10.1016/S0167-5729(99)80001-6Search in Google Scholar

3 Glocker, D.A.; Shah, S.I.: Handbook of Thin Film Process Technology, Institute of Physics Publishing, Bristol (1998).Search in Google Scholar

4 Campbell, C.T.: Surf. Sci. Rep. 27 (1997) 1.10.1016/S0167-5729(96)00011-8Search in Google Scholar

5 Dickey, E.C.; Bagiyono, Y.M.; Sinnott, S.B.; Wagner, T.: Thin Solid Films 372 (2000) 37.10.1016/S0040-6090(00)01052-XSearch in Google Scholar

6 Henry, C.R.: Surf. Sci. Rep. 31 (1998) 231.10.1016/S0167-5729(98)00002-8Search in Google Scholar

7 Köstlmeier, S.; Elsässer, C.: Interface Sci. 8 (2000) 41.10.1023/A:1008731219968Search in Google Scholar

8 Polli, A.D.; Wagner, T.; Gemming, T.; Ruehle, M.: Surf. Sci. 448 (2000) 279.10.1016/S0039-6028(99)01233-9Search in Google Scholar

9 Finnis, M.W.: J. Phys.: Condens. Matter 8 (1996) 5811.10.1088/0953-8984/8/32/003Search in Google Scholar

10 Wagner, T.; Lorenz, M.; Ruehle, M.: J. Mater. Res. 11 (1996) 1255.10.1557/JMR.1996.0160Search in Google Scholar

11 Wagner, T.: J. Mater. Res. 13 (1998) 693.10.1557/JMR.1998.0087Search in Google Scholar

12 Schweinfest, R.; Köstlmeier, S.; Ernst, F.; Elsaesser, C.; Wagner, T.; Finnis, M.W.: Phil. Mag. A 81 (2001) 927.10.1080/01418610151133375Search in Google Scholar

13 Romanov, A.E.; Wagner, T.; Rühle, M.: Scripta mater. 38 (1998) 869.10.1016/S1359-6462(97)00570-8Search in Google Scholar

14 Schönberger, U.; Andersen, O.K.; Methfessel, M.: Acta metall. mater. 40 (1992) S1.10.1016/0956-7151(92)90257-FSearch in Google Scholar

15 Benedek, R.; Seidman, D.N.; Minkoff, M.; Yang, L.H.; Alavi, A.: Phys. Rev. B 60 (1999) 16094.10.1103/PhysRevB.60.16094Search in Google Scholar

16 Benedek, R.; Seidman, D.N.; Yang, L.H.: Microsc. Microanal. 3 (1997) 333.10.1017/S1431927697970252Search in Google Scholar

17 Reed, T.B.: Free Energies of Formation of Binary Compounds: An Atlas of Charts for High-Temperature Chemical Calculations, MIT Press, Cambridge, MA (1971).10.1149/1.2404111Search in Google Scholar

18 Ochs, T.; Koestlmeier, S.; Elsaesser, C.: Integrated Ferroelectrics 32 (2001) 959.10.1080/10584580108215697Search in Google Scholar

19 Polli, A.D.; Wagner, T.; Ruehle, M.: Surf. Sci. 429 (1999) 237.10.1016/S0039-6028(99)00383-0Search in Google Scholar

20 Richter, G.; Wagner, T.; Ruehle, M.: Unpublished results.Search in Google Scholar

21 Wagner, T.; Richter, G.; Rühle, M.: J. Appl. Phys. 89 (2001) 2606.10.1063/1.1338987Search in Google Scholar

22 Yoshimoto, M.; Maeda, T.; Shimozono, K.; Koinuma, H.; Shinohara, M.; Ishiyama, O.; Ohtani, F.: Appl. Phys. Lett. 65 (1994) 3197.10.1063/1.112988Search in Google Scholar

23 Wagner, T.: Unpublished results.Search in Google Scholar

24 Vook, R.V.: Int. Met. Rev. 27 (1982) 209.10.1179/imr.1982.27.1.209Search in Google Scholar

25 Oya, G.; Koishi, M.; Sawada, Y.: J. Appl. Phys. 60 (1986) 1440.10.1063/1.337323Search in Google Scholar

26 Pashley, D.W., in: R.W. Cahn (ed.), Materials Science and Engineering 15 (1991).Search in Google Scholar

27 Conrad, T.; Rousseau, A.-C.; Yu, L.M.; Ghijsen, J.; Sporken, R.; Caudano, R.; Johnson, R.L.: Surf. Sci. 359 (1996) 82.10.1016/0039-6028(96)00344-5Search in Google Scholar

28 Hill, D.M.; Meyer, H.M.; Weaver, J.H.: J. Appl. Phys. 65 (1989) 4943.10.1063/1.343211Search in Google Scholar

Received: 2001-03-20
Published Online: 2022-02-11

© 2001 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. “No wise man ever wish to be younger”
  4. Aufsätze/Articles
  5. Entropy, Transformations and Sustainability of Industrial Life Cycles
  6. Positron Annihilation in Stable and Supercooled Metallic Melts
  7. Local Characterization of the Diffusion Process during Discontinuous Precipitation: A Review
  8. The Dependence of Abnormal Grain Growth on Initial Grain Size in 316 L Stainless Steel
  9. Diffusion-Controlled Grain Growth in Liquid-Phase Sintering of W–Cu Nanocomposites
  10. Evaluation of Densification Mechanisms of Liquid-Phase Sintering
  11. Phase Transformation of a Dual Phase Al–Fe Alloy Prepared by Mechanical Alloying
  12. Discrete Element Simulation of Ceramic Powder Processing
  13. Strain Relaxation and Internal Friction in the Range of the Glass Transition
  14. A Thermodynamic Model of an Amorphous Grain Boundary Phase in Liquid-Phase Sintered β-SiAlON Ceramic
  15. Epitaxial Growth of Metals on (100) SrTiO3: The Influence of Lattice Mismatch and Reactivity
  16. Microstructure and Modifications of Cu/Al2O3 Interfaces
  17. Structural Transformations Induced by Swift Heavy Ions in Polysiloxanes and Polycarbosilanes
  18. Metastable Al–Nd–Ni and Stable Al–La–Ni Phase Equilibria
  19. Phase Equilibria of the Al–Nd and Al–Nd–Ni Systems
  20. System Pr –Pd–O: Phase Diagram and Thermodynamic Properties of Ternary Oxides Using Solid-State Cells with Special Features
  21. Calculation of Phase Equilibria in Candidate Solder Alloys
  22. Thermodynamic Assessment of the Zr–O Binary System
  23. Delaminating Layered Oxide Composites with Wavy Interfaces
  24. Contemporary Materials Issues for Advanced EB-PVD Thermal Barrier Coating Systems
  25. Monte Carlo Simulations of Strength Distributions of Brittle Materials – Type of Distribution, Specimen and Sample Size
  26. On the Optimization of the Microstructure in Powder Metallurgical Ag–SnO2–In2O3 Contact Materials
  27. Some New Aspects of Microstructural Design of β-Si3N4 Ceramics
  28. Ni-Based SOFC Anodes: Microstructure and Electrochemistry
  29. Effect of Copper Line Geometry and Process Parameters on Interconnect Microstructure and Degradation Processes
  30. Thermal Stability of Nanoscale Co/Cu Multilayers
  31. Methods for Characterising the Precipitation of Nanometer-Sized Secondary Hardening Carbides and Related Effects in Tool Steels
  32. Prediction of Local Strain and Hardness in Sheet Forming
  33. Novel in situ-Infiltrated Al2O3-Metal Composites
  34. Influence of Microstructure and Impurities on Thermal Conductivity of Aluminium Nitride Ceramics
  35. Notifications/Mitteilungen
  36. Personelles/Personal
  37. Bücher/Books
  38. Tagungen/Conferences
Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2001-0133/html
Scroll to top button