Home Ni-Based SOFC Anodes: Microstructure and Electrochemistry
Article
Licensed
Unlicensed Requires Authentication

Ni-Based SOFC Anodes: Microstructure and Electrochemistry

  • Anja Bieberle and Ludwig J. Gauckler EMAIL logo
Published/Copyright: February 11, 2022
Become an author with De Gruyter Brill

Abstract

The electrochemical behavior of Ni-based SOFC anodes with different microstructures was studied. The anodes consisted either of a Ni gauze, a Ni pattern, a Ni paste, or a Ni –YSZ cermet. According to electrochemical impedance spectroscopy (EIS) measurements, the anodes are dominated by two main processes. The high frequency process decreases exponentially with an applied overpotential and is thermally activated with an activation energy of around 1 eV. The process could be attributed to the adsorption of hydrogen including charge transfer. The low frequency impedance arc arises only under a high overpotential applied between the working and the reference anode. The impedance of this process increases the higher the overpotential and is thermally activated with an activation energy of 0.5 eV. This process is assigned to the desorption of water.


Prof. Dr. L. J. Gauckler Nichtmetallische Werkstoffe Sonneggstr. 5, CH-8092 Zürich, Switzerland Fax: +41 1 6 32 11 32

Dedicated to Professor Dr. Dr. h. c. mult. Günter Petzow on the occasion of his 75th birthday


  1. Dr. S. Primdahl and Dr. M. Mogensen, Risø National Laboratory, are gratefully acknowledged for providing Ni paste as well as for their constant interest in our work. Dr. K. Honegger, Sulzer Innotec, Winterthur, is thanked for sputtering of Ni. M. Jörger, ETH Zürich, is highly thanked for his efforts in terms of screen-printing.

References

1 Minh, N.Q.; Takahashi, T.: Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam (1995).Search in Google Scholar

2 Itho, H.; Yamamoto, T.; Mori, M.; Horita, T.; Sakai, N.; Yokokawa, H.; Dokiya, M.: J. Electrochem. Soc. 144 (1997) 641–646.10.1149/1.1837460Search in Google Scholar

3 Suzuki, M.; Sasaki, H.; Otoshi, S.; Kajimura, A.; Ippommatsu, M.: Solid State Ionics 62 (1993) 125 –130.10.1016/0167-2738(93)90260-ASearch in Google Scholar

4 Iwata, T.: J. Electrochem. Soc. 143 (1996) 1521–1524.10.1149/1.1836673Search in Google Scholar

5 Ekanayake, P.; Gödickemeier, M.; Gauckler, L.J., in: B.V.R. Chowdari, M.A.K.L. Dissanayake, M.A. Careem (eds.), Proc. 5th Asian Conf. on Solid State Ionics: New Developments, World Scientific Publishing, Singapore (1996) 535–543.Search in Google Scholar

6 Mogensen, M.; Skaarup, S.: Solid State Ionics86–88 (1996) 1151 –1160.10.1016/0167-2738(96)00280-9Search in Google Scholar

7 Tsai, T.; Barnett, S.A.: J. Electrochem. Soc. 145 (1998) 1696 – 1701.10.1149/1.1838542Search in Google Scholar

8 Skaarup, S.; Zachau-Christiansen, B.; Jacobsen, T., in: F.W. Poulsen, N. Bonanos, S. Linderoth, M. Mogensen, B. Zachau-Christiansen (eds.), Proc. 17th Risø Int. Symp. on Mat. Sci.: High Temperature Electrochemistry: Ceramics and Metals, Risø National Laboratory, Roskilde (1996) 423–430.Search in Google Scholar

9 Sunde, S.: Electrochimica Acta 42 (1997) 2637–2648.10.1016/S0013-4686(96)00455-0Search in Google Scholar

10 Primdahl, S.: Ph.D. Thesis, University of Twente (1999).Search in Google Scholar

11 Jiang, S.P.; Badwal, S.P.S.: Solid State Ionics 123 (1999) 209 – 224.10.1016/S0167-2738(99)00124-1Search in Google Scholar

12 Holtappels, P.; de Haart, L.G.J.; Stimming, U.: J. Electrochem. Soc. 146 (1999) 2976–2982.10.1149/1.1392038Search in Google Scholar

13 de Boer, B.; Ph.D. Thesis, University of Twente (1998).Search in Google Scholar

14 Kawada, T.; Sakai, N.; Yokokawa, H.; Dokiya, M.; Mori, M.; Iwata, T.: Solid State Ionics40/41 (1990) 402–406.10.1016/0167-2738(90)90367-ZSearch in Google Scholar

15 Mizusaki, J.; Tagawa, H.; Saito, V.; Kamitani, K.; Yamamura, T.; Hirano, K.; Ehara, S.; Takagi, T.; Hikita, T.; Ippomatsu, M.; Nakagawa, S.; Hashimoto, K.: J. Electrochem. Soc. 141 (1994) 2129–2134.10.1149/1.2055073Search in Google Scholar

16 Nakagawa, N.; Sakurai, H.; Kondo, K.; Morimoto, T.; Hatanaka, K.; Kato, K.: J. Electrochem. Soc. 142 (1995) 3474 – 3478.10.1149/1.2050007Search in Google Scholar

17 Brown, M.; Primdahl, S.; Mogensen, M.: J. Electrochem. Soc. 147 (2000) 475 – 485.10.1149/1.1393220Search in Google Scholar

18 de Boer, B.; Gonzalez, M.; Bouwmeester, H.J.M.; Verweij, H.: Solid State Ionics 127 (2000) 269–276.10.1016/S0167-2738(99)00299-4Search in Google Scholar

19 Bieberle, A.; Gauckler, L.J.: J. Electrochem. Soc., in press.Search in Google Scholar

20 Bieberle, A.; Gauckler, L.J.: Solid State Ionics 135 (2000) 337– 345.10.1016/S0167-2738(00)00462-8Search in Google Scholar

21 Bieberle, A.: Ph.D. Thesis, ETH Zürich (2000).Search in Google Scholar

22 Macdonald, J.R.: Impedance Spectroscopy, John Wiley, New York (1987).Search in Google Scholar

23 Guillodo, M.; Vernoux, P.; Fouletier, J.: Solid State Ionics 127 (2000) 99–107.10.1016/S0167-2738(99)00254-4Search in Google Scholar

24 Jørgensen, M.J.; Mogensen, M.: J. Electrochem. Soc. (2000), submitted.Search in Google Scholar

25 van Hassel, B.A.; Boukamp, B.A.; Burggraaf, A.J.: Solid State Ionics 53–54 (1992) 890 – 903.10.1016/0167-2738(92)90270-YSearch in Google Scholar

26 Narita, H.; Mizusaki, J.; Tagawa, H.: Denki Kagaku 61 (1993) 756–757.10.5796/electrochemistry.61.756Search in Google Scholar

27 Boukamp, B.A.: Solid State Ionics20 (1986) 31–44.10.1016/0167-2738(86)90031-7Search in Google Scholar

28 Somorjai, G.A.: Introduction to Surface Chemistry and Catalysis, John Wiley, New York(1994) 347.Search in Google Scholar

29 Thiel, P.A.; Madey, T.E.: Surf. Sci. Rep. 7 (1987) 211 – 385.10.1016/0167-5729(87)90001-XSearch in Google Scholar

30 Mitterdorfer, A.: Ph.D. Thesis, ETH Zürich (1997).Search in Google Scholar

Received: 2001-04-24
Published Online: 2022-02-11

© 2001 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. “No wise man ever wish to be younger”
  4. Aufsätze/Articles
  5. Entropy, Transformations and Sustainability of Industrial Life Cycles
  6. Positron Annihilation in Stable and Supercooled Metallic Melts
  7. Local Characterization of the Diffusion Process during Discontinuous Precipitation: A Review
  8. The Dependence of Abnormal Grain Growth on Initial Grain Size in 316 L Stainless Steel
  9. Diffusion-Controlled Grain Growth in Liquid-Phase Sintering of W–Cu Nanocomposites
  10. Evaluation of Densification Mechanisms of Liquid-Phase Sintering
  11. Phase Transformation of a Dual Phase Al–Fe Alloy Prepared by Mechanical Alloying
  12. Discrete Element Simulation of Ceramic Powder Processing
  13. Strain Relaxation and Internal Friction in the Range of the Glass Transition
  14. A Thermodynamic Model of an Amorphous Grain Boundary Phase in Liquid-Phase Sintered β-SiAlON Ceramic
  15. Epitaxial Growth of Metals on (100) SrTiO3: The Influence of Lattice Mismatch and Reactivity
  16. Microstructure and Modifications of Cu/Al2O3 Interfaces
  17. Structural Transformations Induced by Swift Heavy Ions in Polysiloxanes and Polycarbosilanes
  18. Metastable Al–Nd–Ni and Stable Al–La–Ni Phase Equilibria
  19. Phase Equilibria of the Al–Nd and Al–Nd–Ni Systems
  20. System Pr –Pd–O: Phase Diagram and Thermodynamic Properties of Ternary Oxides Using Solid-State Cells with Special Features
  21. Calculation of Phase Equilibria in Candidate Solder Alloys
  22. Thermodynamic Assessment of the Zr–O Binary System
  23. Delaminating Layered Oxide Composites with Wavy Interfaces
  24. Contemporary Materials Issues for Advanced EB-PVD Thermal Barrier Coating Systems
  25. Monte Carlo Simulations of Strength Distributions of Brittle Materials – Type of Distribution, Specimen and Sample Size
  26. On the Optimization of the Microstructure in Powder Metallurgical Ag–SnO2–In2O3 Contact Materials
  27. Some New Aspects of Microstructural Design of β-Si3N4 Ceramics
  28. Ni-Based SOFC Anodes: Microstructure and Electrochemistry
  29. Effect of Copper Line Geometry and Process Parameters on Interconnect Microstructure and Degradation Processes
  30. Thermal Stability of Nanoscale Co/Cu Multilayers
  31. Methods for Characterising the Precipitation of Nanometer-Sized Secondary Hardening Carbides and Related Effects in Tool Steels
  32. Prediction of Local Strain and Hardness in Sheet Forming
  33. Novel in situ-Infiltrated Al2O3-Metal Composites
  34. Influence of Microstructure and Impurities on Thermal Conductivity of Aluminium Nitride Ceramics
  35. Notifications/Mitteilungen
  36. Personelles/Personal
  37. Bücher/Books
  38. Tagungen/Conferences
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2001-0146/html
Scroll to top button