Home Evaluation of Densification Mechanisms of Liquid-Phase Sintering
Article
Licensed
Unlicensed Requires Authentication

Evaluation of Densification Mechanisms of Liquid-Phase Sintering

  • Sung-Min Lee and Suk-Joong L. Kang EMAIL logo
Published/Copyright: February 11, 2022
Become an author with De Gruyter Brill

Abstract

The contact flattening between grains has long been considered to be the densification mechanism during liquidphase sintering. Recently, however, we proposed pore filling as being the major mechanism. In this investigation, we critically examine the two densification mechanisms by calculating their contributions to the sintering. The calculation shows that the contact flattening can be operative at the early stage for systems with a dihedral angle of zero degrees. However, its contribution to grain shape change and compact shrinkage is insignificant compared with that of the grain growth. A consideration of microstructures in real systems further suggests that the contribution of contact flattening is much less than the calculated value and is negligible from the beginning of the liquid-phase sintering. In fact, pore filling, which is induced by grain growth, appears to be essentially the only densification mechanism. An exemplified calculation of densification kinetics by pore filling is also presented and its implication discussed.


Prof. Suk-Joong L. Kang Department of Materials Science and Engineering Taejon, 305–701, Korea Fax: +82 42 869 8920

Dedicated to Professor Dr. Dr. h. c. mult. Günter Petzow on the occasion of his 75th birthday


  1. This work was done under a joint research program of the Korea Advanced Institute of Science and Technology (KAIST) and the Institut National Polytechnique de Grenoble (INPG), supported by the Korean Ministry of Science and Technology (contract No. 99-I-03-057). The authors thank Mr. Sug-Woo Jung for his assistance in the preparation of the manuscript.

References

1 Kingery, W.D.: J. Appl. Phys. 30 (1959) 301.10.1063/1.1735155Search in Google Scholar

2 Lee, S.-M. ; Kang, S.-J.L.: Acta. Mater. 46 (1998) 3191.10.1016/S1359-6454(97)00489-8Search in Google Scholar

3 Cannon, H.S.; Lenel, F.V. in: F. Benesovsky (ed.), Proc. Plansee Seminar 1952, Metallwerk Plansee, Reutte (1953) 106.Search in Google Scholar

4 Huppmann, W.J.; Riegger, H.: Acta Metall. 23 (1975) 965.10.1016/0001-6160(75)90010-3Search in Google Scholar

5 Fortes, M.A.: Powd. Metall. Int. 14 (1982) 96.10.1051/gse:19820111Search in Google Scholar

6 Belhadjhamida, A.; German, R.M., in: A. Lawley, A. Swanson (eds.), Advance in Powder Metallurgy and Particulate Materials, Vol. 3, Gorden and Breach, New York (1993) 85.Search in Google Scholar

7 Lee, S.-M.; Chaix, J.M.; Martin, C.L.; Allibert, C.H.; Kang, S.-J.L.: Met. Mater. 5 (1999) 197.10.1007/BF03026053Search in Google Scholar

8 Gessinger, G.H.; Fischmeister, H.F.; Lukas, H.L.: Acta Metall. 21 (1973) 715.10.1016/0001-6160(73)90082-5Search in Google Scholar

9 Lifshitz, I.M.; Slyozov, V.V.: J. Phys. Chem. Solids 19 (1961) 35.10.1016/0022-3697(61)90054-3Search in Google Scholar

10 Wagner, C.: Z. Elektrochem. 65 (1961) 581.10.1001/archopht.1961.01840020583023Search in Google Scholar

11 Ardell, A.J.: Acta Metall. 20 (1972) 61.10.1016/0001-6160(72)90114-9Search in Google Scholar

12 Brailsford, A.D.; Wynblatt, P.: Acta Metall. 27 (1979) 489.10.1016/0001-6160(79)90041-5Search in Google Scholar

13 DeHoff, R.T.: Acta Metall. Mater. 39 (1991) 2349.10.1016/0956-7151(91)90016-TSearch in Google Scholar

14 German, R.M.; Olevsky, E.A.: Metall. Mater. Trans. A 29 (1998) 3057.10.1007/s11661-998-0213-zSearch in Google Scholar

15 Kingery, W.D.; Narasimhan, M.D.: J. Appl. Phys. 30 (1959) 307.10.1063/1.1735156Search in Google Scholar

16 Kwon, O.-J.; Yoon, D.N.: Int. J. Powder Metall. Powder Tech. 17 (1981) 127.Search in Google Scholar

17 Kang, S.-J.L.; Kaysser, W.A.; Petzow, G.; Yoon, D.N.: Powder Metall. 27 (1984) 97.10.1179/pom.1984.27.2.97Search in Google Scholar

18 Kaysser, W.A.; Petzow, G.: Z. Metallkd. 76 (1985) 687.Search in Google Scholar

19 Park, J.K.; Kang, S.-J.L.; Eun, K. Y.; Yoon, D. N.: Metall. Trans. A 20 (1989) 837.10.1007/BF02651650Search in Google Scholar

20 Sarian, S.; Weart, H.W.: J. Appl. Phys. 37 (1966) 1675.10.1063/1.1708583Search in Google Scholar

21 Kang, S.S.; Yoon, D.N.: Metall. Trans. A 13 (1982) 1405.10.1007/BF02642878Search in Google Scholar

22 Kim, S.S.; Yoon, D.N.: Acta Metall. 31 (1983) 1151.10.1016/0001-6160(83)90177-3Search in Google Scholar

23 Lee, D.-D.; Kang, S.-J.L.; Yoon, D.N.: J. Am. Ceram. Soc. 71 (1988) 803.10.1111/j.1151-2916.1988.tb06417.xSearch in Google Scholar

24 Kang, S.-J.L.; Han, S.-M.: MRS Bull. 20 (1995) 33.10.1557/S0883769400045085Search in Google Scholar

25 Moon, H.; Kim, B.K.; Kang, S.-J.L.: Acta. Mater. 49 (2001) 1293.10.1016/S1359-6454(00)00394-3Search in Google Scholar

26 Park, H.-H.; Cho, S.-J.; Yoon, D.N.: Metall. Trans. A 15 (1984) 1075.10.1007/BF02644700Search in Google Scholar

27 Kang, S.-J.L.; Kim, K.-H.; Yoon, D.N.: J. Am. Ceram. Soc. 74 (1991) 425.10.1111/j.1151-2916.1991.tb06900.xSearch in Google Scholar

28 Kang, S.-J.L.; Kaysser, W.A.; Petzow, G.; Yoon, D.N.: Acta Metall. 33 (1985) 1919.10.1016/0001-6160(85)90014-8Search in Google Scholar

29 Kaysser, W.A.; Zivkovic, M.; Petzow, G.: J. Mater. Sci. 20 (1985) 578.10.1007/BF01026528Search in Google Scholar

30 Lee, D.-D.; Kang, S.-J.L.; Yoon, D.N.: Scripta Metall. 24 (1990) 927.10.1016/0956-716X(90)90139-8Search in Google Scholar

31 Svoboda, J.; Riedel, H.; Gaebel, R.: Acta Mater. 44 (1996) 3215.10.1016/1359-6454(95)00440-8Search in Google Scholar

32 Mortensen, A.: Acta Mater. 45 (1997) 749.10.1016/S1359-6454(96)00202-9Search in Google Scholar

33 Kingery, W.D.; Berg, M.: J. Appl. Phys. 26 (1955) 1205.10.1063/1.1721874Search in Google Scholar

34 Exner, H.E.; Bross, P.: Acta Metall. 27 (1979) 1007.10.1016/0001-6160(79)90188-3Search in Google Scholar

35 Kang, S.-J.L.; Azou, P.: Powder Metall. 28 (1985) 90.10.1179/pom.1985.28.2.90Search in Google Scholar

36 Park, H.-H.; Kang, S.-J.L.; Yoon, D.N.: Metall. Trans. A 17 (1986) 325.10.1007/BF02643908Search in Google Scholar

37 Park, H.-H.; Kwon, O.-J.; Yoon, D.N.: Metall. Trans. A 17 (1986) 1915.10.1007/BF02644989Search in Google Scholar

38 Kang, S.-J.L.; Lee, S.-M., in: R.M. German, G.L. Messing (eds.), Proc. Sintering ’99 – 2nd Int. Conf. on Science, Technology and Applications of Sintering, in press.Search in Google Scholar

39 Park, H.H.; Yoon, D.N.: Metall. Trans. A 16 (1985) 923.10.1007/BF02814844Search in Google Scholar

40 Yoon, D.N.; Huppmann W.J.: Acta Metall. 27 (1979) 693.10.1016/0001-6160(79)90020-8Search in Google Scholar

41 Heady, R.B.; Cahn, J.W.: Metall. Trans. 1 (1970) 185.10.1007/BF02819260Search in Google Scholar

42 Eremenko, V.N.; Naidich, Y.V.; Lavrinenko, I.A.: Liquid-Phase Sintering, Consultants Bureau, New York (1970).10.1007/978-1-4757-5665-4Search in Google Scholar

43 Tewari, A.; Gokhale, A.M.; German, R.M.: Acta Mater. 47 (1999) 3721.10.1016/S1359-6454(99)00164-0Search in Google Scholar

44 Louis, P.; Gokhale, A.M.: Acta, Metall. Mater. 44 (1996) 1519.10.1016/1359-6454(95)00296-0Search in Google Scholar

45 Churn, K.S.; German, R.M.: Metall. Trans. A 15 (1984) 331.10.1007/BF02645119Search in Google Scholar

46 Carter, W.C., in: L.-Q. Chen et al. (eds.), Mathematics of Microstructure Evolution, The Minerals, Metals & Materials Society, Philadelphia, PA (1996) 1.Search in Google Scholar

47 Hough, R.R.; Rolls R.: Metall. Trans. 2 (1971) 2471.10.1007/BF02814884Search in Google Scholar

48 Ejima, T.; Kameda, M.: J. Jpn. Inst. Met. 33 (1969) 96.10.2320/jinstmet1952.33.1_96Search in Google Scholar

49 Kleebe, H.-J.; Cinibulk, M.K.; Cannon, R.M.; Rühle, M.: J. Am. Ceram. Soc. 76 (1993) 1969.10.1111/j.1151-2916.1993.tb08319.xSearch in Google Scholar

50 Luo, J.; Wang H.; Chiang, Y.-M.: J. Am. Ceram. Soc. 82 (1999) 916.10.1111/j.1151-2916.1999.tb01853.xSearch in Google Scholar

51 Chung, S.-Y.: Ph. D. Thesis, Korea Advanced Institute of Science and Technology, Taejon (2001).Search in Google Scholar

52 Hansen, M.; Anderko, K.: Constitution of Binary Alloys, McGraw-Hill, New York (1958).10.1149/1.2428700Search in Google Scholar

53 Gans, W.; Pawlek, F., Rüpenack A.V.: Z. Metallkd. 54 (1963) 147.10.1515/ijmr-1963-540305Search in Google Scholar

54 B.D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley, Reading, MA (1978).Search in Google Scholar

55 Hwang, N.-M.; Kang, S.-J.L.; Yoon, D.N.: Metall. Trans. A 17 (1986) 1429.10.1007/BF02650124Search in Google Scholar

56 Kim, Y.-P.: M.S. Thesis, Korea Advanced Institute of Science and Technology, Taejon (2000).Search in Google Scholar

57 Yoon, D.N.; Huppmann, W. J.: Acta Metall. 27 (1979) 973.10.1016/0001-6160(79)90185-8Search in Google Scholar

58 King, A.H.: Int. Mater. Rev. 32 (1987) 173.10.1179/095066087790150304Search in Google Scholar

59 Yoon, D.Y.: Int. Mater. Rev. 40 (1995) 149.10.1179/imr.1995.40.4.149Search in Google Scholar

60 Jeon, J.H.; Kang, S.-J.L.: J. Am. Ceram. Soc. 77 (1994) 1688.10.1111/j.1151-2916.1994.tb09781.xSearch in Google Scholar

61 Lee, H.-Y.; Kim, J.-S.; Kang, S.-J.L.: Interface Sci. 8 (2000) 223.10.1023/A:1008768320484Search in Google Scholar

Received: 2001-04-16
Published Online: 2022-02-11

© 2001 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. “No wise man ever wish to be younger”
  4. Aufsätze/Articles
  5. Entropy, Transformations and Sustainability of Industrial Life Cycles
  6. Positron Annihilation in Stable and Supercooled Metallic Melts
  7. Local Characterization of the Diffusion Process during Discontinuous Precipitation: A Review
  8. The Dependence of Abnormal Grain Growth on Initial Grain Size in 316 L Stainless Steel
  9. Diffusion-Controlled Grain Growth in Liquid-Phase Sintering of W–Cu Nanocomposites
  10. Evaluation of Densification Mechanisms of Liquid-Phase Sintering
  11. Phase Transformation of a Dual Phase Al–Fe Alloy Prepared by Mechanical Alloying
  12. Discrete Element Simulation of Ceramic Powder Processing
  13. Strain Relaxation and Internal Friction in the Range of the Glass Transition
  14. A Thermodynamic Model of an Amorphous Grain Boundary Phase in Liquid-Phase Sintered β-SiAlON Ceramic
  15. Epitaxial Growth of Metals on (100) SrTiO3: The Influence of Lattice Mismatch and Reactivity
  16. Microstructure and Modifications of Cu/Al2O3 Interfaces
  17. Structural Transformations Induced by Swift Heavy Ions in Polysiloxanes and Polycarbosilanes
  18. Metastable Al–Nd–Ni and Stable Al–La–Ni Phase Equilibria
  19. Phase Equilibria of the Al–Nd and Al–Nd–Ni Systems
  20. System Pr –Pd–O: Phase Diagram and Thermodynamic Properties of Ternary Oxides Using Solid-State Cells with Special Features
  21. Calculation of Phase Equilibria in Candidate Solder Alloys
  22. Thermodynamic Assessment of the Zr–O Binary System
  23. Delaminating Layered Oxide Composites with Wavy Interfaces
  24. Contemporary Materials Issues for Advanced EB-PVD Thermal Barrier Coating Systems
  25. Monte Carlo Simulations of Strength Distributions of Brittle Materials – Type of Distribution, Specimen and Sample Size
  26. On the Optimization of the Microstructure in Powder Metallurgical Ag–SnO2–In2O3 Contact Materials
  27. Some New Aspects of Microstructural Design of β-Si3N4 Ceramics
  28. Ni-Based SOFC Anodes: Microstructure and Electrochemistry
  29. Effect of Copper Line Geometry and Process Parameters on Interconnect Microstructure and Degradation Processes
  30. Thermal Stability of Nanoscale Co/Cu Multilayers
  31. Methods for Characterising the Precipitation of Nanometer-Sized Secondary Hardening Carbides and Related Effects in Tool Steels
  32. Prediction of Local Strain and Hardness in Sheet Forming
  33. Novel in situ-Infiltrated Al2O3-Metal Composites
  34. Influence of Microstructure and Impurities on Thermal Conductivity of Aluminium Nitride Ceramics
  35. Notifications/Mitteilungen
  36. Personelles/Personal
  37. Bücher/Books
  38. Tagungen/Conferences
Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2001-0128/html
Scroll to top button