Home Discrete Element Simulation of Ceramic Powder Processing
Article
Licensed
Unlicensed Requires Authentication

Discrete Element Simulation of Ceramic Powder Processing

  • Peter Greil EMAIL logo , Jens Cordelair and Alexander Bezold
Published/Copyright: February 11, 2022
Become an author with De Gruyter Brill

Abstract

Discrete element modeling (DEM) was applied for simulating the powder packing dynamics during electrophoretic deposition of electrostatically stabilized ZrO2 (powder size 1 μm) and tape casting of BaTiO3 (powder size 0.3 μm) stabilized by polymer adsorption. The results indicate that a transition zone of ordering is supposed to exist ahead of the growth front of the solid sediment during electrophoretic deposition. Local variation of the shear rate in the tape casting process with increasing distance from the blade gives rise for the generation of particle clusters under low shear, and cluster disintegration (shear thinning) under high shear conditions. Thus, DEM simulation provides a detailed insight into local variations of particle interaction processes during consolidation which can be used for optimization of the shaping process of colloidal ceramic powder suspensions.


Prof. Dr. Peter Greil Department of Materials Science (III) University of Erlangen-Nürnberg Martensstr. 5, D-91058 Erlangen, Germany Fax: +49 91 31 8 52 83 11

Dedicated to Professor Dr. Dr. h. c. mult. Günter Petzow on the occasion of his 75th birthday


References

1 Lange, F.F.: J. Am. Ceram. Soc. 72 (1989) 3.10.1111/j.1151-2916.1989.tb05945.xSearch in Google Scholar

2 Hamaker, H.C.: Physica (Amsterdam) 4 (1937) 1058.10.1016/S0031-8914(37)80203-7Search in Google Scholar

3 Derjaguin, B.V.; Landau, L.D.: Acta Physicochimica URSS 14 (1941) 633.Search in Google Scholar

4 Verwey, E.J.W.; Overbeek, J.T.G.: Theory of Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948).Search in Google Scholar

5 Ducker, W.A.; Senden, T.J.; Pashley, R.M.: Langmuir 8 (1992) 1831.10.1021/la00043a024Search in Google Scholar

6 Adcock, D.S.; McDowell, I.C.: J. Am. Ceram. Soc. 40 (1957) 355.10.1111/j.1151-2916.1957.tb12552.xSearch in Google Scholar

7 Fennelly, T.J.; Reed, J.S.: J. Am. Ceram. Soc. 55 (1972) 264.10.1111/j.1151-2916.1972.tb11277.xSearch in Google Scholar

8 Rowlands, R.R.: Am. Ceram. Soc. Bull. 45 (1966) 16.Search in Google Scholar

9 Mistler, R.E.: Am. Ceram. Soc. Bull. 69 (1990) 1022.Search in Google Scholar

10 Pitchumani, R.; Karbhari, V.M.: J. Am. Ceram. Soc. 78 (1995) 2497.10.1111/j.1151-2916.1995.tb08691.xSearch in Google Scholar

11 Ceserano, J.; Segaμman, R.; Calvert P.: Ceram. Ind. (1998) 94.Search in Google Scholar

12 Miller, K.T.; Zukoski, C.F.: J. Am. Ceram. Soc. 77 (1994) 2473.10.1111/j.1151-2916.1994.tb04626.xSearch in Google Scholar

13 Hofman, R.L.: Trans. Soc. Rheol. 16 (1972) 155.10.1122/1.549250Search in Google Scholar

14 van Blaaderen, A.; Ruel, R.; Wiltzius, P.: Nature (London) 385 (1997) 321.10.1038/385321a0Search in Google Scholar

15 Bender, J.; Wagner, N.J.: J. Rheol. 40 (1996) 899.10.1122/1.550767Search in Google Scholar

16 Hong, C.W.: J. Ceram. Soc. Jpn. 104 (1996) 793.10.2109/jcersj.104.793Search in Google Scholar

17 Hong, C.W.: J. Am. Ceram. Soc. 80 (1997) 2517.10.1111/j.1151-2916.1997.tb03153.xSearch in Google Scholar

18 Oda, K.; Shigematsu, T.; Onishi T., in: J.R. Williams, G.G.W. Mustoe (eds.), Proc. 2nd Int.Conf. on Discrete Element Methods (DEM), IESL Publ. , MIT, Cambridge, MA (1993) 165.Search in Google Scholar

19 Napper, D.H.: Polymer Stabilization of Colloidal Dispersions, Academic Press, London (1983).Search in Google Scholar

20 Johnson, K.L.; Kendall, K.; Roberts, A.D.: Proc. Roy. Soc. London A 324 (1971) 30.Search in Google Scholar

21 Johnson, K.L.: Contact Mechanics, Cambridge Univ. Press, Cambridge (1985).10.1017/CBO9781139171731Search in Google Scholar

22 Mindlin, R.D.; Deresiewicz, H.: J. Appl. Mech. 20 (1953) 327.10.1115/1.4010702Search in Google Scholar

23 Hong, C.W.: J. Europ. Ceram. Soc. 18 (1998) 2159.10.1016/S0955-2219(98)00115-0Search in Google Scholar

24 Cappella, B.; Dietler, G.: Surf. Sci. Rep. 34 (1999) 1.10.1016/S0167-5729(99)00003-5Search in Google Scholar

25 Sarkar, P.; Nicholson, P.S.: J. Am. Ceram. Soc. 79 (1996) 1987.10.1111/j.1151-2916.1996.tb08929.xSearch in Google Scholar

26 Hamann, C.H.; Vielstich, W.: Elektrochemie, Wiley-VCH, Weinheim (1998).Search in Google Scholar

27 Koelmans, H.; Overbeek, J.T.G.: Disc. Farad. Soc. 18 (1954) 52.10.1039/df9541800052Search in Google Scholar

28 Arora, A.K.; Tata, B.V.R.: Ordering and Phase Transitions in Charged Colloids, VCH, Weinheim (1996).Search in Google Scholar

29 Schmidt, M.; Münstedt, H.; Svec, M.; Roosen, A.; Betz, Th.; Koppe, F.: J. Am. Ceram. Soc. (2001), submitted.Search in Google Scholar

30 Chou, Y.T.; Ko, Y.T.; Yan, M.F.: J. Am. Ceram. Soc. 70 (1987) C 280.10.1111/j.1151-2916.1987.tb04900.xSearch in Google Scholar

31 Terrones, G.; Smith, P.A.; Armstrong, T.R.; Soltesz, T.J.: J. Am. Ceram. Soc. 80 (1997) 3151.10.1111/j.1151-2916.1997.tb03244.xSearch in Google Scholar

32 Russel, W.B.; Saville, D.A.; Schowalter, W.R.: Colloidal Dispersions, Cambridge Univ. Press, Cambridge (1989).10.1017/CBO9780511608810Search in Google Scholar

33 Bergström, L.: Adv. Colloid Interface Sci. 70 (1997)125.10.1016/S0001-8686(97)00003-1Search in Google Scholar

34 Ackerson, B.J.; Pusey, P.N.: Phys. Rev. Lett. 61 (1988) 1033.10.1103/PhysRevLett.61.1033Search in Google Scholar

35 Heyes, D.M.; Melrose, J.R.: J. Non-Newton. Fluid 46 (1993) 1.10.1016/0377-0257(93)80001-RSearch in Google Scholar

36 Hunter, R.J.: Foundations of Colloid Science, Clarendon Press, Oxford (1992).Search in Google Scholar

Received: 2001-02-28
Published Online: 2022-02-11

© 2001 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. “No wise man ever wish to be younger”
  4. Aufsätze/Articles
  5. Entropy, Transformations and Sustainability of Industrial Life Cycles
  6. Positron Annihilation in Stable and Supercooled Metallic Melts
  7. Local Characterization of the Diffusion Process during Discontinuous Precipitation: A Review
  8. The Dependence of Abnormal Grain Growth on Initial Grain Size in 316 L Stainless Steel
  9. Diffusion-Controlled Grain Growth in Liquid-Phase Sintering of W–Cu Nanocomposites
  10. Evaluation of Densification Mechanisms of Liquid-Phase Sintering
  11. Phase Transformation of a Dual Phase Al–Fe Alloy Prepared by Mechanical Alloying
  12. Discrete Element Simulation of Ceramic Powder Processing
  13. Strain Relaxation and Internal Friction in the Range of the Glass Transition
  14. A Thermodynamic Model of an Amorphous Grain Boundary Phase in Liquid-Phase Sintered β-SiAlON Ceramic
  15. Epitaxial Growth of Metals on (100) SrTiO3: The Influence of Lattice Mismatch and Reactivity
  16. Microstructure and Modifications of Cu/Al2O3 Interfaces
  17. Structural Transformations Induced by Swift Heavy Ions in Polysiloxanes and Polycarbosilanes
  18. Metastable Al–Nd–Ni and Stable Al–La–Ni Phase Equilibria
  19. Phase Equilibria of the Al–Nd and Al–Nd–Ni Systems
  20. System Pr –Pd–O: Phase Diagram and Thermodynamic Properties of Ternary Oxides Using Solid-State Cells with Special Features
  21. Calculation of Phase Equilibria in Candidate Solder Alloys
  22. Thermodynamic Assessment of the Zr–O Binary System
  23. Delaminating Layered Oxide Composites with Wavy Interfaces
  24. Contemporary Materials Issues for Advanced EB-PVD Thermal Barrier Coating Systems
  25. Monte Carlo Simulations of Strength Distributions of Brittle Materials – Type of Distribution, Specimen and Sample Size
  26. On the Optimization of the Microstructure in Powder Metallurgical Ag–SnO2–In2O3 Contact Materials
  27. Some New Aspects of Microstructural Design of β-Si3N4 Ceramics
  28. Ni-Based SOFC Anodes: Microstructure and Electrochemistry
  29. Effect of Copper Line Geometry and Process Parameters on Interconnect Microstructure and Degradation Processes
  30. Thermal Stability of Nanoscale Co/Cu Multilayers
  31. Methods for Characterising the Precipitation of Nanometer-Sized Secondary Hardening Carbides and Related Effects in Tool Steels
  32. Prediction of Local Strain and Hardness in Sheet Forming
  33. Novel in situ-Infiltrated Al2O3-Metal Composites
  34. Influence of Microstructure and Impurities on Thermal Conductivity of Aluminium Nitride Ceramics
  35. Notifications/Mitteilungen
  36. Personelles/Personal
  37. Bücher/Books
  38. Tagungen/Conferences
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2001-0130/html
Scroll to top button