Home Thermodynamic Assessment of the Zr–O Binary System
Article
Licensed
Unlicensed Requires Authentication

Thermodynamic Assessment of the Zr–O Binary System

  • P. Liang , N. Dupin , S. G. Fries , H. J. Seifert EMAIL logo , I. Ansara , H. L. Lukas and F. Aldinger
Published/Copyright: February 11, 2022
Become an author with De Gruyter Brill

Abstract

Thermodynamic and phase diagram experimental data relevant to the Zr–O binary system have been assessed. A set of Gibbs energy functions describing the phases in this system is presented. The adjustable parameters of the models are obtained by least-squares fit to the experimental data. The liquid phase is described by Hillert’s partially ionic liquid model. The interstitial solid solution model is applied to the metallic zirconium solid solutions bZr and αZr. The ordering αZr is described by a three-sublattice model with Bragg-Williams treatment of ordering. The two modifications of the zirconium dioxide, αZrO2 and bZrO2, are modelled as stoichiometric phases. The modification cZrO2 is described by the Wagner-Schottky model expressed in the compound-energy formalism. The gas phase is treated as an ideal solution of the species Zr, Zr2,O1, O2, O3, ZrO and ZrO2. The calculated phase diagrams and values for the thermodynamic properties are compared with experimental data.


Dr. H.-J. Seifert Max-Planck-Institut Metallforschung Heisenbergstr. 5, D-70569 Stuttgart, Germany Fax: +49 7 11 68 61 1 31

Dedicated to Professor Dr. Dr. h. c. mult. Günter Petzow on the occasion of his 75th birthday


References

25Hen Henning, F.: Naturwiss. 13 (1925) 661.10.1007/BF01591647Search in Google Scholar

30Wag Wagner, C.; Schottky, W.: Z. Phys. Chem. 11 (1930) 163.Search in Google Scholar

32Cla Clausing, P.: Z. Anorg. Allg. Chem. 204 (1932) 33.10.1002/zaac.19322040105Search in Google Scholar

34Bra Bragg, W.L.; Williams, E.J.: Proc. Roy. Soc. A 145 (1934) 69.10.2307/409605Search in Google Scholar

50Art Arthur, J.S.: J. Appl. Phys. 21 (1950) 732.10.1063/1.1699748Search in Google Scholar

50Cou Coughlin, J.P.; King, E.G.: J. Amer. Chem. Soc. 72 (1950) 2262.10.1021/ja01161a106Search in Google Scholar

52Lam Lambertson, W.A.; Genzel, F.H.: USAEO Report AECD-3465 (1952).Search in Google Scholar

54Dom Domagala, R.F.; McPherson, D.J.: Trans. AIME 200 (1954) 238.10.1007/BF03398005Search in Google Scholar

54Hum Humphrey, G.L.: J. Amer. Chem. Soc. 76 (1954) 978.10.1021/ja01633a009Search in Google Scholar

56Kub Kubaschewski, O.; Dench, W.A.: J. Inst. Metals 84 (1956) 440.Search in Google Scholar

61Geb Gebhardt, E.; Seghezzi, H.D.; Dürrschnabel, W.: J. Nucl. Mater. 4 (1961) 255.10.1016/0022-3115(61)90075-7Search in Google Scholar

61Hol Holmberg, B.; Dagerham, T.: Acta Chem. Scand. 15 (1961) 919.10.3891/acta.chem.scand.15-0919Search in Google Scholar

61Kel Kelley, K.K.; King, E.G.: US Bureau of Mines, Bulletin No. 592 (1961).Search in Google Scholar

62Kom Komarek, K.L.; Silver, M.: Proc. Symp. on Thermodynamics of Nuclear Materials, International Atomic Energy Agency, Vienna, May (1962) 749.Search in Google Scholar

62Smi Smith, D.K.; Cline, C.F.: J. Amer. Ceram. Soc. 45 (1962) 249.10.1111/j.1151-2916.1962.tb11135.xSearch in Google Scholar

63Pea Pears, C.D.; Osment, D.: Technical Documentary Report NO. ASD-TDR 62-765, Southern Research Institute, Birmingham, AL, Jan. (1963).Search in Google Scholar

64Hub Huber, E.Y.; Head, E.L.; Holly, C.E.: J. Phys. Chem. 68 (1964) 3040.10.1021/j100792a052Search in Google Scholar

65Smi Smith, D.K.; Newkirk, H.W.: Acta Cryst. 18 (1965) 983.10.1107/S0365110X65002402Search in Google Scholar

65Vie Viechnicki, D.; Stubican, V.S.: J. Amer. Ceram. Soc. 48 (1965) 292.10.1111/j.1151-2916.1965.tb14744.xSearch in Google Scholar

66Kir Kirillin, V.A.; Sheindlin, A.E.; Chekhovskoi, V, Ya.; Zhukova, I.A.; Tarasov, V.D.: High. Temp. 4 (1966) 813.10.1111/j.1151-2916.1965.tb14744.xSearch in Google Scholar

66Nog1 Noguchi, T.; Kozuku, T.: Solar Energy 10 (1966) 203.10.1016/0038-092X(66)90014-4Search in Google Scholar

66Nog2 Noguchi, T.; Mizuno, M.; Kozuku, T.: Kogyo Kagaku Zasshi 69 (1966) 1705.10.1016/0038-092X(66)90014-4Search in Google Scholar

67Kor Kornilov, A.N.; Ushakova, I.M.; Skuratov, S.M.: Russ. J. Phys. Chem. 41 (1967) 101.10.1246/nikkashi1898.69.9_1705Search in Google Scholar

67Ruh Ruh, R.; Garrett, H.J.: J. Amer. Ceram. Soc. 50 (1967) 257.10.1111/j.1151-2916.1967.tb15099.xSearch in Google Scholar

70Lat Latta, R.E.; Duderstadt, E.C.; Fryxell, R.E.: J. Nucl. Mater. 35 (1970) 345.10.1111/j.1151-2916.1967.tb15099.xSearch in Google Scholar

70Yam Yamaguchi, S.; Hirabayashi, M.: J. Appl. Cryst. 3 (1970) 319.10.1016/0022-3115(70)90218-7Search in Google Scholar

71Jan Stull, D.R.; Prophet, H.: JANAF Thermochemical Tables (1971).10.1107/S0021889870006362Search in Google Scholar

72Ack Ackermann, R.J.; Rauh, E.G.: J. Chem. Thermodyn. 4 (1972) 521.10.1016/0021-9614(72)90074-2Search in Google Scholar

73Bar Barker, W.W.; Bailey, F.P.: Carrett, W.: J. Solid State Chem. 7 (1973) 448.10.1016/0021-9614(72)90074-2Search in Google Scholar

73Cla Claisse, F.; Giam, T.M.: J. Less-Common Met. 30 (1973) 377.10.1016/0022-5088(73)90148-3Search in Google Scholar

74Hir1 Hirabayashi, M.; Yamaguchi, S.; Asano, H.; Hiraga, K, in: H. Warlimont, (ed.), Order-Disorder Transformations in Alloys, Springer-Verlag, Berlin (1974) 266.10.1016/0022-5088(73)90148-3Search in Google Scholar

74Hir2 Hirabayashi, M.; Yamaguchi, S.; Arai, T.; Asano, H.; Hashimoto, S.: Phys. Status Solidi 23 (1974) 331.10.1007/978-3-642-80840-1_10Search in Google Scholar

74Vas Vasil’eva, I.A.; Granovskaya, Z.V.: Russ. J. Phys. Chem. 48 (1974) 902.10.1002/pssa.2210230138Search in Google Scholar

75Ack Ackermann, R.J.; Rauh, E.G.; Alexander, C.A.: High Temp. Sci. 7 (1975) 304.10.1016/0021-9614(75)90058-0Search in Google Scholar

76Alc Alcock, C.B.; Jacob, K.T.; Zador, S., in: O. Kubaschewski (ed.), Zirconium: Physico-Chemical Properties of Its Compounds and Alloys, Atomic Energy Review, Spec. Issue No. 6, Int. Atomic Energy Agency, Vienna (1976) 7.Search in Google Scholar

76Ara Arai, T.; Hirabayashi, M.: J. Less-Common Met. 44 (1976) 291.10.1016/0022-5088(76)90144-2Search in Google Scholar

76Kub Kubaschewski, O.: As Ref. 76Alc, p. 67.Search in Google Scholar

76Now Nowotny, H.; Seifert, K.: As Ref. 76Alc,p,141Search in Google Scholar

77Ack Ackermann, R.J.; Garg, S.P.; Rauh, E.G.: J. Amer. Ceram. Soc. 60 (1977) 341.10.1111/j.1151-2916.1977.tb15557.xSearch in Google Scholar

77Luk Lukas, H.L.; Henig, E.-Th.; Zimmermann, B.: Calphad 1 (1977) 225.10.1016/0364-5916(77)90002-5Search in Google Scholar

78Ack Ackermann, R.J.; Garg, S.P.; Rauh, E.G.: J. Amer. Ceram. Soc. 61 (1978) 275.10.1111/j.1151-2916.1978.tb09303.xSearch in Google Scholar

79Ack Ackermann, R.J.; Garg, S.P.; Rauh, E.G.: High Temp. Sci. 11 (1979) 199.Search in Google Scholar

80Rau Rauh, E.G.; Garg, S.P.: J. Amer. Ceram. Soc. 63 (1980) 239.10.1111/j.1151-2916.1980.tb10711.xSearch in Google Scholar

81Rau Rauh, E.G.; Garg, S.P.: High Temp. Sci. 14 (1981) 121.Search in Google Scholar

84Bou Boureau, G.; Gerdanian, P.: J. Phys. Chem. Solids 45 (1984) 141.10.1016/0022-3697(84)90112-4Search in Google Scholar

85Hil Hillert, M.; Jansson, B.; Sundman, B.; Agren, J.: Metall. Trans. A 16 (1985) 261.10.1007/BF02816052Search in Google Scholar

86Abr Abriata, J.P.; Garce’s, J.; Versaci, R.: Bull. Alloy Phase Diagrams 61 (1986) 116.10.1007/BF02881546Search in Google Scholar

88Ans Ansara, I.; Sundman, B.; Willemin, P.: Acta Metall. 36 (1988) 977.10.1016/0001-6160(88)90152-6Search in Google Scholar

89Wes Westrum, E.F., Jr.: Private communication, cited in: E.H.P. Cordfunke, R.J.M. Konings (eds.), Thermochemical Data for Reactor Materials and Fission Products, North-Holland Elsevier Science, Amsterdam (1990) 469.Search in Google Scholar

91Din Dinsdale, A.T.: Calphad 15 (1991) 319.10.1016/0364-5916(91)90030-NSearch in Google Scholar

91Vil Villars, P.; Calvert, L.D.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM, Metals Park, OH (1991).Search in Google Scholar

92Luk Lukas, H.L.; Fries, S.G.: J. Phase Equilibria 13 (1992) 532.10.1007/BF02665766Search in Google Scholar

94SGT The SGTE Substance Database, Version 1994, SGTE (Scientific Group Thermodata Europe), Grenoble (1994).Search in Google Scholar

98Fri Fries, S.G.; Lukas, H.L.; Ansara, I.; Sundman, B.: Ber. Bunsenges. Phys. Chem. 102 (1998) 1102.10.1002/bbpc.19981020907Search in Google Scholar

98Gue Gueneau, C.: J. Nucl. Mater. 254 (1998) 158.10.1016/S0022-3115(98)00002-6Search in Google Scholar

98Che Chevalier, P.Y.: J. Nucl. Mater. 257 (1998) 213.10.1016/S0022-3115(98)00450-4Search in Google Scholar

99Toj Tojo, T.; Atake, T.; Mori, T; Yamamura, H.: J. Chem. Thermodyn. 31 (1999) 831.10.1006/jcht.1998.0481Search in Google Scholar

Received: 2001-03-20
Published Online: 2022-02-11

© 2001 Carl Hanser Verlag, München

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. “No wise man ever wish to be younger”
  4. Aufsätze/Articles
  5. Entropy, Transformations and Sustainability of Industrial Life Cycles
  6. Positron Annihilation in Stable and Supercooled Metallic Melts
  7. Local Characterization of the Diffusion Process during Discontinuous Precipitation: A Review
  8. The Dependence of Abnormal Grain Growth on Initial Grain Size in 316 L Stainless Steel
  9. Diffusion-Controlled Grain Growth in Liquid-Phase Sintering of W–Cu Nanocomposites
  10. Evaluation of Densification Mechanisms of Liquid-Phase Sintering
  11. Phase Transformation of a Dual Phase Al–Fe Alloy Prepared by Mechanical Alloying
  12. Discrete Element Simulation of Ceramic Powder Processing
  13. Strain Relaxation and Internal Friction in the Range of the Glass Transition
  14. A Thermodynamic Model of an Amorphous Grain Boundary Phase in Liquid-Phase Sintered β-SiAlON Ceramic
  15. Epitaxial Growth of Metals on (100) SrTiO3: The Influence of Lattice Mismatch and Reactivity
  16. Microstructure and Modifications of Cu/Al2O3 Interfaces
  17. Structural Transformations Induced by Swift Heavy Ions in Polysiloxanes and Polycarbosilanes
  18. Metastable Al–Nd–Ni and Stable Al–La–Ni Phase Equilibria
  19. Phase Equilibria of the Al–Nd and Al–Nd–Ni Systems
  20. System Pr –Pd–O: Phase Diagram and Thermodynamic Properties of Ternary Oxides Using Solid-State Cells with Special Features
  21. Calculation of Phase Equilibria in Candidate Solder Alloys
  22. Thermodynamic Assessment of the Zr–O Binary System
  23. Delaminating Layered Oxide Composites with Wavy Interfaces
  24. Contemporary Materials Issues for Advanced EB-PVD Thermal Barrier Coating Systems
  25. Monte Carlo Simulations of Strength Distributions of Brittle Materials – Type of Distribution, Specimen and Sample Size
  26. On the Optimization of the Microstructure in Powder Metallurgical Ag–SnO2–In2O3 Contact Materials
  27. Some New Aspects of Microstructural Design of β-Si3N4 Ceramics
  28. Ni-Based SOFC Anodes: Microstructure and Electrochemistry
  29. Effect of Copper Line Geometry and Process Parameters on Interconnect Microstructure and Degradation Processes
  30. Thermal Stability of Nanoscale Co/Cu Multilayers
  31. Methods for Characterising the Precipitation of Nanometer-Sized Secondary Hardening Carbides and Related Effects in Tool Steels
  32. Prediction of Local Strain and Hardness in Sheet Forming
  33. Novel in situ-Infiltrated Al2O3-Metal Composites
  34. Influence of Microstructure and Impurities on Thermal Conductivity of Aluminium Nitride Ceramics
  35. Notifications/Mitteilungen
  36. Personelles/Personal
  37. Bücher/Books
  38. Tagungen/Conferences
Downloaded on 12.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2001-0140/html
Scroll to top button