Startseite Relationships between mechanical properties of oak timber (Quercus robur L.)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Relationships between mechanical properties of oak timber (Quercus robur L.)

  • Guillermo Riesco Muñoz EMAIL logo und Andrés Remacha Gete
Veröffentlicht/Copyright: 25. Februar 2011
Veröffentlichen auch Sie bei De Gruyter Brill
Holzforschung
Aus der Zeitschrift Band 65 Heft 5

Abstract

Ring-porous hardwoods such as oak are in high demand for furniture-making, cooperage, flooring, and construction. However, evaluating the quality of such timber is difficult and time consuming, and simpler tests are required. Models for predicting as many mechanical properties as possible, based on easier-to-determine mechanical tests, may help. In this study, the hardness, modulus of elasticity, bending, compression, and impact bending strength parallel to grain were tested on defect-free laths obtained from a sample of 42 oak trees. The relationships between the variables were investigated. Three models that relate the resistance to axial compression with bending strength and stiffness (R2>0.55; P<0.01) are proposed for defect-free oak timber. Selection of models mainly depended on the bias, which was highly variable among the models tested. The prediction models proposed in the international standard EN 384:2004 for structural dimension timber are not suitable for small clear wood specimens, especially in very elastic woods. The relative independence of hardness and impact bending strength as regards the other mechanical properties is also demonstrated.


Corresponding author. Departamento de Ingeniería Agroforestal, Universidad de Santiago de Compostela, Escuela Politécnica Superior de Lugo, Campus Universitario s/n, 27002 Lugo, Spain Phone: +34-982-285900 Fax: +34-982-285926

Received: 2010-9-10
Accepted: 2011-1-21
Published Online: 2011-02-25
Published Online: 2011-02-25
Published in Print: 2011-08-01

©2011 by Walter de Gruyter Berlin Boston

Artikel in diesem Heft

  1. Original Papers
  2. Lignocellulosic biorefinery: process integration of hydrolysis and fermentation (SSF process)
  3. Study of stilbene and resin acid content of Scots pine heartwood by electrical impedance spectroscopy (EIS)
  4. Radical scavenging characteristics of condensed tannins from barks of various tree species compared with quebracho wood tannin
  5. Two-step hydrolysis of nipa (Nypa fruticans) frond as treated by semi-flow hot-compressed water
  6. Effect of acetic acid addition on chemical conversion of woods as treated by semi-flow hot-compressed water
  7. Oxidative cleavage of non-phenolic β-O-4 lignin model dimers by an extracellular aromatic peroxygenase
  8. Surface chemistry of vessel elements by FE-SEM, μ-XPS and ToF-SIMS
  9. Application of FT-NIR-DR and FT-IR-ATR spectroscopy to estimate the chemical composition of bamboo (Neosinocalamus affinis Keng)
  10. Chemical modification of lignin assisted by microwave irradiation
  11. Acidic oxidation of kraft lignin into aromatic monomers catalyzed by transition metal salts
  12. Effect of Physisporinus vitreus on wood properties of Norway spruce. Part 1: Aspects of delignification and surface hardness
  13. Effect of Physisporinus vitreus on wood properties of Norway spruce. Part 2: Aspects of microtensile strength and chemical changes
  14. Mode I critical stress intensity factor of wood and medium-density fiberboard measured by compact tension test
  15. Effect of oxalic acid pretreatment of wood chips on manufacturing medium-density fiberboard
  16. Experimental investigation of stress wave propagation in standing trees
  17. Relationships between mechanical properties of oak timber (Quercus robur L.)
  18. Estimating mechanical properties and specific gravity for five-year-old Eucalyptus tereticornis having broad moisture content range by NIR spectroscopy
  19. Effect of morphological variability of incrusted pit membranes on efficiency of transverse compression to improve liquid uptake
  20. Short Notes
  21. Performance of biopolymer films with reinforcing cellulose-containing fillers from pine pulp and bark and birch sawdust
  22. Efficacy of two organic biocides with co-added antioxidants
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hf.2011.053/html
Button zum nach oben scrollen