Home Effect of oxalic acid pretreatment of wood chips on manufacturing medium-density fiberboard
Article
Licensed
Unlicensed Requires Authentication

Effect of oxalic acid pretreatment of wood chips on manufacturing medium-density fiberboard

  • Xianjun Li , Zhiyong Cai EMAIL logo , Eric Horn and Jerrold E. Winandy
Published/Copyright: June 29, 2011
Become an author with De Gruyter Brill
Holzforschung
From the journal Volume 65 Issue 5

Abstract

The main objective of this study was to evaluate the effect of oxalic acid (OA) wood chips pretreatment prior to refining, which is done to reduce energy used during the refining process. Selected mechanical and physical performances of medium-density fiberboard (MDF) – internal bonding (IB), modulus of elasticity (MOE), modulus of rupture (MOR), water absorption (WA) and thickness swelling (TS) – made from this OA-pretreated wood were tested and the effect of the OA treatment on carbohydrates investigated. The results showed that the OA treatment significantly reduced refining energy usage, and improved MDF dimensional stability and lightness. However, the OA treatment had a negative effect on the internal bonding strength of MDF panels. The amount of extracted carbohydrates was dramatically increased, up to 24 times, by the OA pretreatment. Carbohydrates extracted from wood chips could be a potential sustainable resource for biofuel or bio-based chemicals. This paper is a contribution to the so-called “value prior to pulping (VPP)” concept.


Corresponding author. USDA Forest Service, Forest Products Laboratory, Madison, WI 53726-2398, USA Phone: +1-608-231-9446 Fax: +1-608-231-9582

Received: 2010-8-12
Accepted: 2011-2-1
Published Online: 2011-06-29
Published Online: 2011-06-29
Published in Print: 2011-08-01

©2011 by Walter de Gruyter Berlin Boston

Articles in the same Issue

  1. Original Papers
  2. Lignocellulosic biorefinery: process integration of hydrolysis and fermentation (SSF process)
  3. Study of stilbene and resin acid content of Scots pine heartwood by electrical impedance spectroscopy (EIS)
  4. Radical scavenging characteristics of condensed tannins from barks of various tree species compared with quebracho wood tannin
  5. Two-step hydrolysis of nipa (Nypa fruticans) frond as treated by semi-flow hot-compressed water
  6. Effect of acetic acid addition on chemical conversion of woods as treated by semi-flow hot-compressed water
  7. Oxidative cleavage of non-phenolic β-O-4 lignin model dimers by an extracellular aromatic peroxygenase
  8. Surface chemistry of vessel elements by FE-SEM, μ-XPS and ToF-SIMS
  9. Application of FT-NIR-DR and FT-IR-ATR spectroscopy to estimate the chemical composition of bamboo (Neosinocalamus affinis Keng)
  10. Chemical modification of lignin assisted by microwave irradiation
  11. Acidic oxidation of kraft lignin into aromatic monomers catalyzed by transition metal salts
  12. Effect of Physisporinus vitreus on wood properties of Norway spruce. Part 1: Aspects of delignification and surface hardness
  13. Effect of Physisporinus vitreus on wood properties of Norway spruce. Part 2: Aspects of microtensile strength and chemical changes
  14. Mode I critical stress intensity factor of wood and medium-density fiberboard measured by compact tension test
  15. Effect of oxalic acid pretreatment of wood chips on manufacturing medium-density fiberboard
  16. Experimental investigation of stress wave propagation in standing trees
  17. Relationships between mechanical properties of oak timber (Quercus robur L.)
  18. Estimating mechanical properties and specific gravity for five-year-old Eucalyptus tereticornis having broad moisture content range by NIR spectroscopy
  19. Effect of morphological variability of incrusted pit membranes on efficiency of transverse compression to improve liquid uptake
  20. Short Notes
  21. Performance of biopolymer films with reinforcing cellulose-containing fillers from pine pulp and bark and birch sawdust
  22. Efficacy of two organic biocides with co-added antioxidants
Downloaded on 11.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf.2011.060/html
Scroll to top button