Abstract
The quality of the autoclaved aerated concrete (AAC) strongly depends on the chemical composition of the raw materials, as well as on the process of the hydrothermal reaction during autoclaving. Performance parameters depend on material structure: fine micron-scale matrix porosity generated by the packing of thin tobermorite plates and coarse aeration pores arising from the foaming of wet mix. In this study the binder varied in calcium sulfate dihydrate (CaSO4⋅2H2O) content. Five series of AAC specimens were produced, with gypsum content 0; 0.55; 1.15; 2.3 and 3.5% of dry mass respectively. AAC units were produced in UNIPOL technology. The study presents experimental results of AAC moisture stabilization. The initial moisture content was determined directly after autoclaving. Slower drying process was observed for samples containing over 2% of gypsum. Whereas other performance parameters, compressive and tensile strength, as well as water absorption and capillary rise, were significantly better comparing to the reference AAC samples.
1 Introduction
In any construction process, it is important to promptly stabilize the moisture content of built-in materials to obtain the declared properties of the products as quickly as possible. Numerous masonry materials have increased moisture content as a result of wet production processes and often this condition adversely affects the parameters of building partitions. It is a common practice to built-in damp materials because of improper storage or due to moisture after the manufacturing process.
AAC is widely used for masonry wall construction in many countries, particularly in Europe. AAC products have different humidity during the masonry works, as well as the dynamics of their moisture stabilization is varied. Cellular concrete units after autoclaving process have moisture content of about 50% and they are often built-in with a moisture content exceeding 40%. The constructed wall may have water content of about 15%.
AAC is a porous material and absorbs moisture from the environment when the relative humidity exceeds 70%. The time needed to stabilize the moisture in the cellular concrete partition is between 1.5 and 2 years, and under extremely unfavorable conditions 2 to 3 years. The first figures in both cases refer to AAC produced using siliceous sand and the second figures to units with fly ash. The examination of AAC walls in buildings after 30 to 40 years has confirmed that the moisture content of partition from sand AAC was about 2.5% while partitions from fly ash AAC - about 4.5%. At such a moisture content, the partitions constructed from AAC units show good thermo-insulating properties [1]. European standard EN 771-4 permits operating moisture of AAC units at 4-8% [2].
Compressive strength is dependent on the moisture content of the material and decreases with moisture growth. There is a close dependency of compressive strength, water absorption and other physical properties on material porosity and the pore size distribution. Moisture is the key feature that determines strength, shrinkage, carbonation and thermal conductivity [3]. Particularly unfavorable is the effect of humidity on compressive strength and coefficient of thermal conductivity λ [4, 5, 6]. Authors [7] describe the problem of determining the coefficient of thermal conductivity under various humidity conditions, based on the standard ISO 10456 [8] and experimental studies. It has been found by laboratory tests that within a range of moisture content up to 5% the standard dependency (exponential function) is correct. Above 5% the course of changes is close to linear.
“White” AACs are generally produced from a mixture of finely ground silica sands, Portland cement, lime, gypsum (calcium sulfate dihydrate) and water. Adding aluminum powder develops its cellular or foamed character.
AAC is produced in a variety of technologies, and the proportions of binders in concrete are also different. The C-S-H phase, which binds the sand particles, plays a major role in the structure formation of cellular concrete and its compression strength [9]. A typical process for the AAC production includes hydrothermal treatment of concrete mixture at high temperatures (typically 180-200°C) under a saturated steam pressure. During the hydrothermal treatment platy-shaped tobermorite crystals (5CaO⋅6SiO2⋅5H2O) are formed as a major component of hardened AAC [9,10, 11, 12, 13].
In AAC technologies the source of sulphates, besides cement, is usually calcium sulphate in the form of gypsum or anhydrite. The most commonly used gypsum dihydrate (hydrated calcium sulphate) as one of the components of the concrete binder. Sulphates in an aerated concrete mixture regulate the setting of the mixture. The release of hydrogen in the cast aerated concrete mass is slower and the concrete microstructure is better. Sulphates influence the shape of tobermorite crystals - they are larger and flatter [13].
This additive has been used in AAC technology for years to improve the properties of this material. Reducing the sulfate content in the AAC mixes leads to increased shrinkage and reduced compressive strength [14]. Calcium sulphate in AAC during hydrothermal treatment accelerates the formation of tobermorite and C-S-H phase, which in turn increases the strength of the final product [12]. As a result, the structure of the concrete becomes tighter and the sorption of concrete is reduced directly after hydrothermal process as the gypsum content in the mix increases. However, it is important to remember that built-in AAC units often have a water content of up to 40% and, as the concrete tightness increases, the process of drying of AAC walls slows down. The aim of this study was to evaluate the drying process of AAC specimens depending on the content of calcium sulphate in the binder.
2 Description of the production method and composition of AAC specimens
AAC specimens were prepared in a prefabrication plant using UNIPOL sand technology, which uses the following raw materials: cement, lime, gypsum, quartz sand, aluminum powder. In this method one of the technological processes is a combined dry grinding of cement, lime and quartz sand in a ball mill to a specific surface of 400-600 m2/kg [9]. Quartz sand is introduced into the mill after screening the oversize grains. During the grinding of the components the temperature is 80-90°C, which is the result of friction and exothermic reaction of water from damp sand with active calcium oxide CaO contained in burnt lime.
For research purposes, five concrete compositions with different gypsum content were designed and produced. The designed dry density of all AAC series was 520 kg/m3. Portland cement CEM I, medium-burnt lime and quartz sand containing over 90% of silica SiO2 were used for the production. Table 1 shows the composition of particular AAC series.
Composition of AAC per 1 m3 of the mixture
| Series | AAC0 | AAC1 | AAC2 | AAC3 | AAC4 |
|---|---|---|---|---|---|
| Gypsum (calcium sulfate dihydrate) [% of dry mass] | 0 | 0.55 | 1.15 | 2.30 | 3.50 |
| Cement + lime [kg] | 143.0 | 145.0 | 141.0 | 136.0 | 133.0 |
| Quartz sand [kg] | 348.0 | 350.0 | 347.0 | 345.0 | 340.0 |
| Added gypsum [kg] | 0 | 2.7 | 5.6 | 11.1 | 16.6 |
| Gypsum in cement [kg] | 3.7 | 3.8 | 3.7 | 3.5 | 3.5 |
| Total gypsum content [kg] | 3.7 | 6.5 | 9.3 | 14.6 | 20.1 |
| Aluminum powder [kg] | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 |
| water/dry components ratio | 0.49 | 0.50 | 0.50 | 0.51 | 0.50 |
The classical hydrothermal treatment method (without vacuum in the first phase) was used in the manufacturing process. The whole hydrothermal process lasted 12 hours. Samples for the experiment were taken directly after autoclaving.
3 Experimental methods
The dry density of concrete specimens was determined according to [15] and the compressive strength according to [16]. The tensile strength test was carried out in accordance with the standard procedure [17] on dried 100 mm cube specimens prepared in the same manner as for compressive strength tests - cut from masonry units in the three zones: top, middle and bottom. The individual samples were loaded perpendicular to the direction of mass growth by applying a load through 2.0 cm wide steel bars located in the middle of a cube wall. Moisture content test was performed according to [18].
Capillary water absorption rate data were obtained using the standard procedure [19] in which cubes 100×100×100 mm of initially dry material were placed in contact with water (5±1 mm) in a shallow tray. The side faces were sealed with epoxy resin. Water was absorbed through the 100×100 mm bottom face. The weight gain of the sample was measured after 10, 30 and 90 minutes. Water absorption coefficient of masonry units, due to capillary action, is determined from Equation:
where: Cws – water absorption coefficient of masonry units due to capillary action, [g/(m2*s0,5)]; mdry, s – drymass [g]; mso, s – mass after saturation time t [g]; As – area of contact surface [m2]; tso – saturation time [s].
The procedures described in the standard [17] was applied for determination of the maximum water absorption and capillary rise.
Concrete maximum water absorption test was performed according to the following test procedure:
the samples were initially, for 24 hours, put in water at 1/3 of the sample height;
after 24 hours, the water table was increased to 2/3 of the sample height for another 24 hours;
then the samples were completely immersed in water for another 24 hours;
after the total time of 72 hours the maximum water absorption was determined.
The state of full saturation simulates the situation when material is totally submerged in water, for example, because of floods or long-term effects of rainwater.
For capillary rise test the prisms 100 × 100 × 200 mm were dried to constant mass at 105±5°C, and then after cooling they were placed in contact with water (30 mm). Water level was maintained constant throughout the experiment. Measurements of capillary rise were made after 1, 7, 24, 48 and 72 hours. The rise heights were measured from the water line at the center of each of the four prism side faces of the sample. The capillary rise of individual samples was determined as the arithmetic mean of the measurements on the four side faces of the samples. The samples were prepared from the whole masonry units, three samples from each unit in the same way as for density and strength tests.
The temperature and relative humidity (RH) during the concrete drying process were chosen assuming that under operational conditions the heated rooms for permanent residence have the temperature 20±2°C and the average RH is 50-65%. Testing of the drying rate from the moisture residue after the autoclaving process was carried out in laboratory conditions at temperature 22±1°C and RH in the range 50-55%.
Because of the significant moisture content in concrete as a result of the full saturation of its pores with water, the drying test was carried out under laboratory conditions at 25±1°C and RH 30±1% in a forced air circulation laboratory oven. Samples were dried until the stabilized moisture content of about 6% was reached.
4 Experimental results and discussion
The results of the performed examinations are presented in Table 2. The relationship between gypsum content and the compressive strengths of AAC specimens is given in Figure 1.

Dependency between gypsum content and compressive strength
Test results of AAC specimens
| Series | AAC0 | AAC1 | AAC2 | AAC3 | AAC4 | |
|---|---|---|---|---|---|---|
| Dry density [kg/m3] | 548 | 520 | 510 | 514 | 541 | |
| Compressive strength in dry state [N/mm2] | 3.88 | 4.16 | 4.31 | 5.46 | 5.60 | |
| Compressive strength at stabilized moisture content [N/mm2] | 2.70 | 3.19 | 3.13 | 3.83 | 4.34 | |
| Tensile strength [N/mm2] | 1.1 | 1.1 | 1.3 | 1.4 | 1.6 | |
| Stabilized moisture content [%] | 5.1 | 4.4 | 4.8 | 5.4 | 4.9 | |
| Time of moisture stabilization [h] | 21.0 | 25.0 | 30.0 | 44.0 | 58.0 | |
| Maximum water absorption [%] | 64.0 | 59.7 | 61.8 | 56.4 | 60.1 | |
| after 10‘ | 185.4 | 148.1 | 151.4 | 91.6 | 116.1 | |
| Water absorption [g/(m2s0.5)] | after 30‘ | 150.8 | 113.5 | 120.3 | 77.9 | 94.3 |
| after 90‘ | 125.0 | 91.3 | 95.1 | 65.9 | 74.7 | |
| after 1h | 2.3 | 1.9 | 1.6 | 1.3 | 1.7 | |
| after 7h | 4.1 | 3.1 | 2.3 | 1.8 | 2.3 | |
| Capillary rise [cm] | after 24h | 6.2 | 4.7 | 3.8 | 2.7 | 3.1 |
| after 48h | 8.6 | 6.5 | 5.4 | 3.8 | 3.9 | |
| after 72h | 7.4 | 10.0 | 7.3 | 4.4 | 4.4 | |
| Change of moisture as a result of drying out from the moisture after the production process [%] | after 0 h | 29.6 | 28.2 | 29.8 | 26.9 | 29.6 |
| after 24 h | 19.1 | 20.4 | 21.8 | 22.3 | 24.8 | |
| after 48 h | 12.0 | 12.8 | 14.4 | 16.0 | 18.4 | |
| after 72 h | 9.2 | 9.9 | 11.5 | 13.1 | 15.6 | |
| after 96 h | 7.7 | 8.3 | 9.9 | 11.8 | 14.0 | |
| after 120 h | 6.1 | 6.5 | 8.1 | 9.9 | 12.2 | |
| after 144 h | 5.2 | 5.2 | 6.8 | 8.5 | 10.8 | |
| after 168 h | 4.4 | 4.4 | 5.6 | 7.3 | 9.6 | |
| after 184 h | 3.8 | 3.8 | 4.8 | 6.6 | 8.7 | |
| after 200 h | 3.6 | 3.4 | 4.4 | 6.0 | 8.2 | |
| after 224 h | 3.3 | 2.8 | 3.5 | 4.9 | 6.9 | |
| after 264 h | 3.1 | 2.4 | 2.9 | 4.1 | 6.1 | |
| after 0 h | 64.0 | 59.7 | 61.8 | 56.4 | 60.1 | |
| after 6 h | 59.2 | 54.4 | 57.7 | 52.4 | 55.5 | |
| after 12 h | 51.7 | 45.8 | 50.9 | 45.9 | 48.5 | |
| after 18 h | 44.3 | 38.2 | 45.1 | 39.8 | 42.1 | |
| Change of moisture as a result of drying | after 24 h | 36.6 | 31.0 | 38.8 | 34.4 | 36.3 |
| out from maximum water content [%] | after 30 h | 28.4 | 24.4 | 32.1 | 28.8 | 31.5 |
| after 36 h | 22.5 | 20.0 | 26.2 | 24.8 | 27.5 | |
| after 42 h | 17.7 | 16.9 | 22.0 | 21.8 | 24.5 | |
| after 48 h | 14.2 | 14.3 | 19.1 | 19.6 | 22.3 | |
| after 54 h | 12.3 | 12.8 | 17.1 | 17.9 | 20.5 | |
The compressive strength tested on both dried and stabilized moisture specimens as well as tensile strengths increases with the increase of gypsum content. This increase is significant when gypsum content exceeds 2% of dry weight.
There was no significant effect of sulphate addition on the maximum water absorption of AAC samples after 72 hours, though all specimens containing gypsum have lower absorption compared to the reference concrete.
Effect of the gypsum addition is apparent in case of absorption after 10, 30 and 90 minutes and capillary rise. Figure 2 shows the experimental results of the absorption rate w* (expressed as cumulative absorbed mass/unit inflow area versus t0.5). For 90 minutes only the first stage of water sorptivity was tested - an early time stage where absorption rate w* is linear in t0.5. It is evident that even small amount of added gypsum reduces sorptivity of AAC. The curve constructed for the reference specimens is steeper and the total mass increase is almost two times higher than for the specimens with sulphate content exceeding 2% of dry mass.

Capillary water absorption of AAC specimens (cumulative absorption w*versus t0.5) depending on gypsum content
There is a strong dependency between capillary rise and gypsum dosage (Figure 3). As with mechanical properties, the effect is more significant when gypsum is dosed above 2% of dry mass. Capillary rise after 72-hour test decreased by approximately 40% compared to the control samples.

Capillary rise of AAC specimens depending on gypsum content
It was observed, however, that the rate of drying from moisture residue after production process of the concretes containing hydrated calcium sulphate was slower compared to the reference samples (Figure 4). Moisture content in samples containing 3.5% of gypsum was about twice as high as in the control concrete after 264 hours of drying at 22±1°C.

Influence of gypsum dosage on the drying process of AAC at 22°C from the moisture resulting from the production process to the stabilized moisture content
Moisture content in the specimens with 3.5% of gypsum was over 60% higher than in the reference series (20.5 versus 12.3%) after 54 hours of oven drying from the maximum water absorption, though the starting point was lower (60.1 versus 64.0%).
It is known that the crystallinity of tobermorite largely affects the physical properties of AAC. The differences in microstructure of the tested AAC specimens, resulting in different performance features, are due to the binder composition. Evidently addition of calcium sulfate dihydrate modified the material mictrostructure.
5 Conclusions
AAC that was the subject of this study was manufactured on an industrial scale, which minimized possible errors in the process of dosing, mixing of components or hydrothermal treatment. The whole process was automatically monitored. By modifying the composition of concrete binders, we can modify the properties of cellular concrete and hence the properties of the masonry elements intended for building partitions.
AAC specimens in which calcium sulfate dihydrate content exceeded 2% of dry mass had, compared to gypsum-free specimens:
compressive strength higher by approximately 40% in the dry state and 60% higher in the stabilized moisture content;
tensile strength higher by approximately 40%,
lower water absorption,
capillary rise lower by approximately 40%.
It was observed, however, that when the gypsum content was higher than 2% of dry mass, the drying from the moisture residue after manufacturing process was slower and after 264 hours the moisture content was still higher than 4%. Calcium sulphate affects the process of crystallization of tobermite and C-S-H phase, which is confirmed by the results of strength tests. As a result, AAC3 and AAC4 specimens are characterized by a different porosity structure compared to the reference concrete.
Acknowledgement
The research was partially supported by the projects N° S/WBiIS/1/2016, and it was financially supported by Ministry of Science and Higher Education, Poland.
References
[1] Zapotoczna-Sytek G., AAC of fly ash in the strategy of sustainable development, Cement-Lime-Concrete, 2006, 3, 193-201Suche in Google Scholar
[2] PN-EN 771-4 Specification formasonry units - Part 4: Autoclaved aerated concrete masonry unitsSuche in Google Scholar
[3] Scheffler G.A., Plagge R., Methods for moisture storage and transport property determination of autoclaved aerated concrete. Cement-Lime-Concrete Special Issue, 2011, 70-77Suche in Google Scholar
[4] Unčík S., Struhárová A., Hlavinková M., Sabová A., Balkovic S., Effect of bulk density and moisture content on the properties of autoclaved aerated concrete, Cement-Lime-Concrete, 2013, 4, 189-196Suche in Google Scholar
[5] Laurent J.P., Guerrechaley C., Influence of water-content and temperature on the thermal-conductivity of autoclaved aerated concrete, Mater. Struct., 1995, 28, 464–7210.1007/BF02473166Suche in Google Scholar
[6] Jerman M., Keppert M., Vyborny J., Cerny R., Hygric, thermal and durability properties of autoclaved aerated concrete, Constr. Build. Mat., 2013, 41, 352–35910.1016/j.conbuildmat.2012.12.036Suche in Google Scholar
[7] Schoch T., Kreft O., The influence of moisture on the thermal conductivity of AAC, In: Proceedings of 5th International Conference on Autoclaved Aerated Concrete Securing a sustainable future (Bydgoszcz, Poland), Bydgoszcz, 2011, 361-369.Suche in Google Scholar
[8] PN EN ISO 10456:2009 Building materials and products – Hygrothermal properties – Tabulated design values and procedures for determining declared and design thermal valuesSuche in Google Scholar
[9] Kurdowski W., Chemia cementu i betonu, Wydawnictwo SPC i Wydawnictwo Naukowe PWN, 2010Suche in Google Scholar
[10] Kikuma J., Tsunashima M., Ishikawa T., Matsuno S., Ogawa A., Matsui K., In situ time-resolved X-ray diffraction of tobermorite synthesis process under hydrothermal condition, Mat. Sci. Eng., 2011, 18(2), 022017, 10.1088/1757-899X/18/2/022017Suche in Google Scholar
[11] Kikuma J., Tsunashima M., Ishikawa T., Matsuno S., Ogawa A., Matsui K., et al., In Situ Time-Resolved X-Ray Diffraction of Tobermorite Formation Process Under Autoclave Condition, J. Am. Ceram. Soc., 2010, 93(9), 2667–267410.1111/j.1551-2916.2010.03815.xSuche in Google Scholar
[12] Matsui K., Ogawa A, Kikuma J., Tsunashima M., Ishikawa T, Matsuno S., Influence of addition of Al compound and gypsum on tobermorite formation in autoclaved aerated concrete studied by in situ X-ray diffraction, In: 5th International Conference on Autoclaved Aerated Concrete Securing a sustainable future (Bydgoszcz, Poland), Bydgoszcz, 2011, 147-154Suche in Google Scholar
[13] Helanova E., Drochytka R. Cerny V., Influence of Gypsum Additive on the Formation of Tobermorite in Autoclaved Aerated Concrete, Key Eng. Mat., 2016, 714, 116-12110.4028/www.scientific.net/KEM.714.116Suche in Google Scholar
[14] Stumm A., Cement and sulphate free autoclaved aerated concrete, Cement-Lime-Concrete Special Issue 2011, 26-28Suche in Google Scholar
[15] PN-EN 772-13:2001 Methods of test for masonry units. Part 13: Determination of net and gross dry density ofmasonry units (except for natural stone).Suche in Google Scholar
[16] PN-EN 772-1:2011 Methods of test formasonry units. Part 7: Determination of compressive strength.Suche in Google Scholar
[17] PN-B-06258:1989 Autoclaved Aerated Concrete.Suche in Google Scholar
[18] PN-EN 772-10:2000 Methods of test for masonry units Part 10: Determination of moisture content of calcium silicate and autoclaved aerated concrete units.Suche in Google Scholar
[19] PN-EN 772-11:2011 Methods of test for masonry units. Part 11: Determination of water absorption of aggregate concrete, autoclaved aerated concrete, manufactured stone and natural stone masonry units due to capillary action and the initial rate of water absorption of clay masonry units.Suche in Google Scholar
© 2017 D.Małaszkiewicz and J. Chojnowski
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Artikel in diesem Heft
- Regular Articles
- The Differential Pressure Signal De-noised by Domain Transform Combined with Wavelet Threshold
- Regular Articles
- Robot-operated quality control station based on the UTT method
- Regular Articles
- Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
- Regular Articles
- Numerical study of chemically reacting unsteady Casson fluid flow past a stretching surface with cross diffusion and thermal radiation
- Regular Articles
- Experimental comparison between R409A and R437A performance in a heat pump unit
- Regular Articles
- Rapid prediction of damage on a struck ship accounting for side impact scenario models
- Regular Articles
- Implementation of Non-Destructive Evaluation and Process Monitoring in DLP-based Additive Manufacturing
- Regular Articles
- Air purification in industrial plants producing automotive rubber components in terms of energy efficiency
- Regular Articles
- On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour
- Regular Articles
- Development of an operation strategy for hydrogen production using solar PV energy based on fluid dynamic aspects
- Regular Articles
- An exponential-related function for decision-making in engineering and management
- Regular Articles
- Usability Prediction & Ranking of SDLC Models Using Fuzzy Hierarchical Usability Model
- Regular Articles
- Exact Soliton and Kink Solutions for New (3+1)-Dimensional Nonlinear Modified Equations of Wave Propagation
- Regular Articles
- Entropy generation analysis and effects of slip conditions on micropolar fluid flow due to a rotating disk
- Regular Articles
- Application of the mode-shape expansion based on model order reduction methods to a composite structure
- Regular Articles
- A Combinatory Index based Optimal Reallocation of Generators in the presence of SVC using Krill Herd Algorithm
- Regular Articles
- Quality assessment of compost prepared with municipal solid waste
- Regular Articles
- Influence of polymer fibers on rheological properties of cement mortars
- Regular Articles
- Degradation of flood embankments – Results of observation of the destruction mechanism and comparison with a numerical model
- Regular Articles
- Mechanical Design of Innovative Electromagnetic Linear Actuators for Marine Applications
- Regular Articles
- Influence of addition of calcium sulfate dihydrate on drying of autoclaved aerated concrete
- Regular Articles
- Analysis of Microstrip Line Fed Patch Antenna for Wireless Communications
- Regular Articles
- PEMFC for aeronautic applications: A review on the durability aspects
- Regular Articles
- Laser marking as environment technology
- Regular Articles
- Influence of grain size distribution on dynamic shear modulus of sands
- Regular Articles
- Field evaluation of reflective insulation in south east Asia
- Regular Articles
- Effects of different production technologies on mechanical and metallurgical properties of precious metal denture alloys
- Regular Articles
- Mathematical description of tooth flank surface of globoidal worm gear with straight axial tooth profile
- Regular Articles
- Earth-based construction material field tests characterization in the Alto Douro Wine Region
- Regular Articles
- Experimental and Mathematical Modeling for Prediction of Tool Wear on the Machining of Aluminium 6061 Alloy by High Speed Steel Tools
- Special Issue on Current Topics, Trends and Applications in Logistics
- 10.1515/eng-2017-0001
- Special Issue on Current Topics, Trends and Applications in Logistics
- The Methodology of Selecting the Transport Mode for Companies on the Slovak Transport Market
- Special Issue on Current Topics, Trends and Applications in Logistics
- Determinants of Distribution Logistics in the Construction Industry
- Special Issue on Current Topics, Trends and Applications in Logistics
- Management of Customer Service in Terms of Logistics Information Systems
- Special Issue on Current Topics, Trends and Applications in Logistics
- The Use of Simulation Models in Solving the Problems of Merging two Plants of the Company
- Special Issue on Current Topics, Trends and Applications in Logistics
- Applying the Heuristic to the Risk Assessment within the Automotive Industry Supply Chain
- Special Issue on Current Topics, Trends and Applications in Logistics
- Modeling the Supply Process Using the Application of Selected Methods of Operational Analysis
- Special Issue on Current Topics, Trends and Applications in Logistics
- Possibilities of Using Transport Terminals in South Bohemian Region
- Special Issue on Current Topics, Trends and Applications in Logistics
- Comparison of the Temperature Conditions in the Transport of Perishable Foodstuff
- Special Issue on Current Topics, Trends and Applications in Logistics
- E-commerce and its Impact on Logistics Requirements
- Topical Issue Modern Manufacturing Technologies
- Wear-dependent specific coefficients in a mechanistic model for turning of nickel-based superalloy with ceramic tools
- Topical Issue Modern Manufacturing Technologies
- Effects of cutting parameters on machinability characteristics of Ni-based superalloys: a review
- Topical Issue Desktop Grids for High Performance Computing
- Task Scheduling in Desktop Grids: Open Problems
- Topical Issue Desktop Grids for High Performance Computing
- A Volunteer Computing Project for Solving Geoacoustic Inversion Problems
- Topical Issue Desktop Grids for High Performance Computing
- Improving “tail” computations in a BOINC-based Desktop Grid
- Topical Issue Desktop Grids for High Performance Computing
- LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN
- Topical Issue Desktop Grids for High Performance Computing
- Comparison of Decisions Quality of Heuristic Methods with Limited Depth-First Search Techniques in the Graph Shortest Path Problem
- Topical Issue Desktop Grids for High Performance Computing
- Using Volunteer Computing to Study Some Features of Diagonal Latin Squares
- Topical Issue on Mathematical Modelling in Applied Sciences, II
- A polynomial algorithm for packing unit squares in a hypograph of a piecewise linear function
- Topical Issue on Mathematical Modelling in Applied Sciences, II
- Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes
- Topical Issue on Mathematical Modelling in Applied Sciences, II
- Innovative intelligent technology of distance learning for visually impaired people
- Topical Issue on Mathematical Modelling in Applied Sciences, II
- Implementation and verification of global optimization benchmark problems
- Topical Issue on Mathematical Modelling in Applied Sciences, II
- On a program manifold’s stability of one contour automatic control systems
- Topical Issue on Mathematical Modelling in Applied Sciences, II
- Multi-agent grid system Agent-GRID with dynamic load balancing of cluster nodes
Artikel in diesem Heft
- Regular Articles
- The Differential Pressure Signal De-noised by Domain Transform Combined with Wavelet Threshold
- Regular Articles
- Robot-operated quality control station based on the UTT method
- Regular Articles
- Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate
- Regular Articles
- Numerical study of chemically reacting unsteady Casson fluid flow past a stretching surface with cross diffusion and thermal radiation
- Regular Articles
- Experimental comparison between R409A and R437A performance in a heat pump unit
- Regular Articles
- Rapid prediction of damage on a struck ship accounting for side impact scenario models
- Regular Articles
- Implementation of Non-Destructive Evaluation and Process Monitoring in DLP-based Additive Manufacturing
- Regular Articles
- Air purification in industrial plants producing automotive rubber components in terms of energy efficiency
- Regular Articles
- On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour
- Regular Articles
- Development of an operation strategy for hydrogen production using solar PV energy based on fluid dynamic aspects
- Regular Articles
- An exponential-related function for decision-making in engineering and management
- Regular Articles
- Usability Prediction & Ranking of SDLC Models Using Fuzzy Hierarchical Usability Model
- Regular Articles
- Exact Soliton and Kink Solutions for New (3+1)-Dimensional Nonlinear Modified Equations of Wave Propagation
- Regular Articles
- Entropy generation analysis and effects of slip conditions on micropolar fluid flow due to a rotating disk
- Regular Articles
- Application of the mode-shape expansion based on model order reduction methods to a composite structure
- Regular Articles
- A Combinatory Index based Optimal Reallocation of Generators in the presence of SVC using Krill Herd Algorithm
- Regular Articles
- Quality assessment of compost prepared with municipal solid waste
- Regular Articles
- Influence of polymer fibers on rheological properties of cement mortars
- Regular Articles
- Degradation of flood embankments – Results of observation of the destruction mechanism and comparison with a numerical model
- Regular Articles
- Mechanical Design of Innovative Electromagnetic Linear Actuators for Marine Applications
- Regular Articles
- Influence of addition of calcium sulfate dihydrate on drying of autoclaved aerated concrete
- Regular Articles
- Analysis of Microstrip Line Fed Patch Antenna for Wireless Communications
- Regular Articles
- PEMFC for aeronautic applications: A review on the durability aspects
- Regular Articles
- Laser marking as environment technology
- Regular Articles
- Influence of grain size distribution on dynamic shear modulus of sands
- Regular Articles
- Field evaluation of reflective insulation in south east Asia
- Regular Articles
- Effects of different production technologies on mechanical and metallurgical properties of precious metal denture alloys
- Regular Articles
- Mathematical description of tooth flank surface of globoidal worm gear with straight axial tooth profile
- Regular Articles
- Earth-based construction material field tests characterization in the Alto Douro Wine Region
- Regular Articles
- Experimental and Mathematical Modeling for Prediction of Tool Wear on the Machining of Aluminium 6061 Alloy by High Speed Steel Tools
- Special Issue on Current Topics, Trends and Applications in Logistics
- 10.1515/eng-2017-0001
- Special Issue on Current Topics, Trends and Applications in Logistics
- The Methodology of Selecting the Transport Mode for Companies on the Slovak Transport Market
- Special Issue on Current Topics, Trends and Applications in Logistics
- Determinants of Distribution Logistics in the Construction Industry
- Special Issue on Current Topics, Trends and Applications in Logistics
- Management of Customer Service in Terms of Logistics Information Systems
- Special Issue on Current Topics, Trends and Applications in Logistics
- The Use of Simulation Models in Solving the Problems of Merging two Plants of the Company
- Special Issue on Current Topics, Trends and Applications in Logistics
- Applying the Heuristic to the Risk Assessment within the Automotive Industry Supply Chain
- Special Issue on Current Topics, Trends and Applications in Logistics
- Modeling the Supply Process Using the Application of Selected Methods of Operational Analysis
- Special Issue on Current Topics, Trends and Applications in Logistics
- Possibilities of Using Transport Terminals in South Bohemian Region
- Special Issue on Current Topics, Trends and Applications in Logistics
- Comparison of the Temperature Conditions in the Transport of Perishable Foodstuff
- Special Issue on Current Topics, Trends and Applications in Logistics
- E-commerce and its Impact on Logistics Requirements
- Topical Issue Modern Manufacturing Technologies
- Wear-dependent specific coefficients in a mechanistic model for turning of nickel-based superalloy with ceramic tools
- Topical Issue Modern Manufacturing Technologies
- Effects of cutting parameters on machinability characteristics of Ni-based superalloys: a review
- Topical Issue Desktop Grids for High Performance Computing
- Task Scheduling in Desktop Grids: Open Problems
- Topical Issue Desktop Grids for High Performance Computing
- A Volunteer Computing Project for Solving Geoacoustic Inversion Problems
- Topical Issue Desktop Grids for High Performance Computing
- Improving “tail” computations in a BOINC-based Desktop Grid
- Topical Issue Desktop Grids for High Performance Computing
- LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN
- Topical Issue Desktop Grids for High Performance Computing
- Comparison of Decisions Quality of Heuristic Methods with Limited Depth-First Search Techniques in the Graph Shortest Path Problem
- Topical Issue Desktop Grids for High Performance Computing
- Using Volunteer Computing to Study Some Features of Diagonal Latin Squares
- Topical Issue on Mathematical Modelling in Applied Sciences, II
- A polynomial algorithm for packing unit squares in a hypograph of a piecewise linear function
- Topical Issue on Mathematical Modelling in Applied Sciences, II
- Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes
- Topical Issue on Mathematical Modelling in Applied Sciences, II
- Innovative intelligent technology of distance learning for visually impaired people
- Topical Issue on Mathematical Modelling in Applied Sciences, II
- Implementation and verification of global optimization benchmark problems
- Topical Issue on Mathematical Modelling in Applied Sciences, II
- On a program manifold’s stability of one contour automatic control systems
- Topical Issue on Mathematical Modelling in Applied Sciences, II
- Multi-agent grid system Agent-GRID with dynamic load balancing of cluster nodes