Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water
Abstract
Chiral products play an important role particularly in the field of medicinal chemistry, where it is known that enantiomers often have very different biological properties and effects. One of the most powerful tool to obtain a product as a single enantiomer is asymmetric catalysis. Recently, organocatalysis, i.e. the use of small organic molecules to catalyze enantioselective transformations, has emerged as a prominent field in asymmetric synthesis. In this work, the use of hydrogels as a support for a chiral imidazolidinone organocatalyst (MacMillan catalyst) and its application in the reduction of activated olefins mediated by the Hantzsch ester is reported for the first time. Results showed a good activity of hydrogels in respect to both yield and enantioselection.
References
Annabi, N., Tamayol, A., Uquillas, J. A., Akbari, M., Bertassoni, L. E., Cha, C., Camci-Unal, G., Dokmeci, M. R., Peppas, N. A., & Khademhosseini, A. (2014). 25th Anniversary article: Rational design and applications of hydrogels in regenerative medicine. Advanced Materials, 26, 85–124. DOI: 10.1002/adma.201303233.10.1002/adma.201303233Suche in Google Scholar
Atodiresei, I., Vila, C., & Rueping, M. (2015). Asymmetric organocatalysis in continuous flow: Opportunities for impacting industrial catalysis. ACS Catalysis, 5, 1972–1985. DOI: 10.1021/acscatal.5b00002.10.1021/acscatal.5b00002Suche in Google Scholar
Blackmond, D. G., Armstrong, A., Coombe, V., & Wells, A. (2007). Water in organocatalytic processes: Debunking the myths. Angewandte Chemie International Edition, 46, 3798–3800. DOI: 10.1002/anie.200604952.10.1002/anie.200604952Suche in Google Scholar
Brenna, E., Gatti, F. G., Manfredi, A., Monti, D., & Parmeggiani, F. (2012a). Enoate reductase-mediated preparation of methyl (S)-2-bromobutanoate, a useful key intermediate for the synthesis of chiral active pharmaceutical ingredients. Organic Process Research & Development, 16, 262–268. DOI: 10.1021/op200086t.10.1021/op200086tSuche in Google Scholar
Brenna, E., Gatti, F. G., Monti, D., Parmeggiani, F., & Sacchetti, A. (2012b). Cascade coupling of ene reductases with alcohol dehydrogenases: Enantioselective reduction of prochiral unsaturated aldehydes. ChemCatChem, 4, 653–659. DOI: 10.1002/cctc.201100418.10.1002/cctc.201100418Suche in Google Scholar
Brenna, E., Gatti, F. G., Monti, D., Parmeggiani, F., & Sacchetti, A. (2012c). Productivity enhancement of C=C bioreductions by coupling the in situ substrate feeding product removal technology with isolated enzymes. Chemical Communications, 48, 79–81. DOI: 10.1039/c1cc16014a.10.1039/c1cc16014aSuche in Google Scholar
Brenna, E., Cosi, S. L., Ferrandi, E. E., Gatti, F. G., Monti, D., Parmeggiani, F., & Sacchetti, A. (2013a). Substrate scope and synthetic applications of the enantioselective reduction of α-alkyl-β-arylenones mediated by Old Yellow Enzymes. Organic & Biomolecular Chemistry, 11, 2988–2996. DOI: 10.1039/c3ob40076j.10.1039/c3ob40076jSuche in Google Scholar
Brenna, E., Gatti, F. G., Malpezzi, L., Monti, D., Parmeggiani, F., & Sacchetti, A. (2013b). Synthesis of robalzotan, ebalzotan, and rotigotine precursors via the stereoselective multienzymatic cascade reduction of α,β-unsaturated aldehydes. The Journal of Organic Chemistry, 78, 4811–4822. DOI: 10.1021/jo4003097.10.1021/jo4003097Suche in Google Scholar
Brenna, E., Gatti, F. G., Monti, D., Parmeggiani, F., Sacchetti, A., & Valoti, J. (2015). Substrate-engineering approach to the stereoselective chemo-multienzymatic cascade synthesis of Nicotiana tabacum lactone. Journal of Molecular Catalysis B: Enzymatic, 114, 77–85. DOI: 10.1016/j.molcatb.2014.12.011.10.1016/j.molcatb.2014.12.011Suche in Google Scholar
Dalko, P. I., & Moisan, L. (2001). Enantioselective organocatalysis. Angewandte Chemie International Edition, 40, 3726–3748. DOI: 10.1002/1521-3773(20011015)40:20<3726::aidanie3726>3.0.co;2-d.10.1002/1521-3773(20011015)40:20<3726::aidanie3726>3.0.co;2-dSuche in Google Scholar
Dalko, P. I., & Moisan, L. (2004). In the golden age of organocatalysis. Angewandte Chemie International Edition, 43, 5138–5175. DOI: 10.1002/anie.200400650.10.1002/anie.200400650Suche in Google Scholar
Danelli, T., Annunziata, R., Benaglia, M., Cinquini, M., Cozzi, F., & Tocco, G. (2003). Immobilization of catalysts derived from Cinchona alkaloids on modified poly(ethylene glycol). Tetrahedron: Asymmetry, 14, 461–467. DOI: 10.1016/s0957-4166(02)00830-3.10.1016/s0957-4166(02)00830-3Suche in Google Scholar
Davoodnia, A., Allameh, S., Fazli, S., & Tavakoli-Hoseini, N. (2011). One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA–SiO2) as an efficient and reusable catalyst. Chemical Papers, 65, 714–720. DOI: 10.2478/s11696-011-0064-8.10.2478/s11696-011-0064-8Suche in Google Scholar
Dondoni, A., & Massi, A. (2008). Asymmetric organocatalysis: From infancy to adolescence. Angewandte Chemie International Edition, 47, 4638–4660. DOI: 10.1002/anie.200704684.10.1002/anie.200704684Suche in Google Scholar
Ford, M. C., Bertram, J. P., Hynes, S. R., Michaud, M., Li, Q., Young, M., Segal, S. S., Madri, J. A., & Lavik, E. B. (2006). A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103, 2512–2517. DOI: 10.1073/pnas.0506020102.10.1073/pnas.0506020102Suche in Google Scholar
Giacalone, F., Gruttadauria, M., Agrigento, P., & Noto, R. (2012). Low-loading asymmetric organocatalysis. Chemical Society Reviews, 41, 2406–2447. DOI: 10.1039/c1cs15206h.10.1039/c1cs15206hSuche in Google Scholar
Hayashi, Y. (2006). In water or in the presence of water? Angewandte Chemie International Edition, 45, 8103–8104. DOI: 10.1002/anie.200603378.10.1002/anie.200603378Suche in Google Scholar
Hiki, S., & Kataoka, K. (2007). A facile synthesis of azido-terminated heterobifunctional poly(ethylene glycol)s for “click” conjugation. Bioconjugate Chemistry, 18, 2191–2196. DOI: 10.1021/bc700152j.10.1021/bc700152jSuche in Google Scholar
Itsuno, S., & Hassan, M. M. (2014). Polymer-immobilized chiral catalysts. RSC Advances, 4, 52023–52043. DOI: 10.1039/c4ra09561h.10.1039/c4ra09561hSuche in Google Scholar
Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 40, 2004–2021. DOI: 10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5.10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5Suche in Google Scholar
Lelais, G., & MacMillan, D. W. C. (2006). Modern strategies in organic catalysis: The advent and development of iminium activation. Aldrichimica Acta, 39, 79–87.Suche in Google Scholar
MacMillan, D. W. C. (2008). The advent and development of organocatalysis. Nature, 455, 304–308. DOI: 10.1038/nature07367.10.1038/nature07367Suche in Google Scholar PubMed
Moses, J. E., & Moorhouse, A. D. (2007). The growing applications of click chemistry. Chemical Society Reviews, 36, 1249–1262. DOI: 10.1039/b613014n.10.1039/b613014nSuche in Google Scholar PubMed
Munirathinam, R., Huskens, J., & Verboom, W. (2015). Supported catalysis in continuous-flow microreactors. Advanced Synthesis & Catalysis, 357, 1093–1123. DOI: 10.1002/adsc.201401081.10.1002/adsc.201401081Suche in Google Scholar
Ouellet, S. G., Tuttle, J. B., & MacMillan, D. W. C. (2005). Enantioselective organocatalytic hydride reduction. Journal of the American Chemical Society, 127, 32–33. DOI: 10.1021/ja043834g.10.1021/ja043834gSuche in Google Scholar PubMed
Ouellet, S. G., Walji, A. M., & MacMillan, D. W. C. (2007). Enantioselective organocatalytic transfer hydrogenation reactions using Hantzsch esters. Accounts of Chemical Research, 40, 1327–1339. DOI: 10.1021/ar7001864.10.1021/ar7001864Suche in Google Scholar PubMed
Park, S. Y., Lee, J. W., & Song, C. E. (2015). Parts-permillion level loading organocatalysed enantioselective silylation of alcohols. Nature Communications, 6, 7512, DOI: 10.1038/ncomms8512.10.1038/ncomms8512Suche in Google Scholar PubMed PubMed Central
Puglisi, A., Benaglia, M., Cinquini, M., Cozzi, F., & Celentano, G. (2004). Enantioselective 1,3-dipolar cycloadditions of unsaturated aldehydes promoted by a poly(ethylene glycol)-supported organic catalyst. European Journal of Organic Chemistry, 2004, 567–573. DOI: 10.1002/ejoc.200300571.10.1002/ejoc.200300571Suche in Google Scholar
Rossi, F., Perale, G., Storti, G., & Masi, M. (2012). A library of tunable agarose carbomer-based hydrogels for tissue engineering applications: The role of cross-linkers. Journal of Applied Polymer Science, 123, 2211–2221. DOI: 10.1002/app.34731.10.1002/app.34731Suche in Google Scholar
Sacchetti, A., Mauri, E., Sani, M., Masi, M., & Rossi, F. (2014). Microwave-assisted synthesis and click chemistry as simple and efficient strategy for RGD functionalized hydrogels. Tetrahedron Letters, 55, 6817–6820. DOI: 10.1016/j.tetlet.2014.10.069.10.1016/j.tetlet.2014.10.069Suche in Google Scholar
Santoro, M., Marchetti, P., Rossi, F., Perale, G., Castiglione, F., Mele, A., & Masi, M. (2011). Smart approach to evaluate drug diffusivity in injectable agar-carbomer hydrogels for drug delivery. The Journal of Physical Chemistry B, 115, 2503–2510. DOI: 10.1021/jp1111394.10.1021/jp1111394Suche in Google Scholar PubMed
Seayad, J., & List, B. (2005). Asymmetric organocatalysis. Organic & Biomolecular Chemistry, 3, 719–724. DOI: 10.1039/b415217b.10.1039/b415217bSuche in Google Scholar PubMed
Shi, J. Y., Wang, C. A., Li, Z. J., Wang, Q., Zhang, Y., & Wang, W. (2011). Heterogeneous organocatalysis at work: Functionalization of hollow periodic mesoporous organosilica spheres with MacMillan catalyst. Chemistry – A European Journal, 17, 6206–6213. DOI: 10.1002/chem.201100072.10.1002/chem.201100072Suche in Google Scholar PubMed
Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21, 3307–3329. DOI: 10.1002/adma.200802106.10.1002/adma.200802106Suche in Google Scholar PubMed PubMed Central
Zhu, J., Tang, C., Kottke-Marchant, K., & Marchant, R. E. (2009). Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjugate Chemistry, 20, 333–339. DOI: 10.1021/bc800441v.10.1021/bc800441vSuche in Google Scholar PubMed PubMed Central
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Original Paper
- Prevention of degradation of γ-irradiated EPDM using phenolic antioxidants
- Original Paper
- Differentiation of black, green, herbal and fruit bagged teas based on multi-element analysis using inductively-coupled plasma atomic emission spectrometry
- Original Paper
- Reaction mechanisms of carbon dioxide methanation
- Review
- Power consumption and gas–liquid dispersion in turbulently agitated vessels with vertical dual-array tubular coil baffles
- Short Communication
- Tannins analysis from different medicinal plants extracts using MALDI-TOF and MEKC
- Original Paper
- Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions‡
- Original Paper
- Synthesis of Fe3O4–Ag nanocomposites and their application to enzymeless hydrogen peroxide detection
- Original Paper
- Possibilities for removal of chlorinated dye Mordant Blue 9 from model waste water‡
- Review
- Preparation and properties of gelatin films incorporated with N-hydroxysuccinimide-activated end-bit binary acid
- Original Paper
- Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2,4,5-triaryl-1 H-imidazoles
- Short Communication
- Prediction of power consumption in mechanically agitated gassed reactor in viscous batch‡
- Original Paper
- Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water
- Original Paper
- Continuous synthesis of N-ethylethylenediamine over supported Cu–Zn–La catalysts
- Preface
- Enzyme-assisted extraction of citrus essential oil
- Preface
- Experimental investigations of liquid flow in pipe with flat internal baffles
Artikel in diesem Heft
- Original Paper
- Prevention of degradation of γ-irradiated EPDM using phenolic antioxidants
- Original Paper
- Differentiation of black, green, herbal and fruit bagged teas based on multi-element analysis using inductively-coupled plasma atomic emission spectrometry
- Original Paper
- Reaction mechanisms of carbon dioxide methanation
- Review
- Power consumption and gas–liquid dispersion in turbulently agitated vessels with vertical dual-array tubular coil baffles
- Short Communication
- Tannins analysis from different medicinal plants extracts using MALDI-TOF and MEKC
- Original Paper
- Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions‡
- Original Paper
- Synthesis of Fe3O4–Ag nanocomposites and their application to enzymeless hydrogen peroxide detection
- Original Paper
- Possibilities for removal of chlorinated dye Mordant Blue 9 from model waste water‡
- Review
- Preparation and properties of gelatin films incorporated with N-hydroxysuccinimide-activated end-bit binary acid
- Original Paper
- Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2,4,5-triaryl-1 H-imidazoles
- Short Communication
- Prediction of power consumption in mechanically agitated gassed reactor in viscous batch‡
- Original Paper
- Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water
- Original Paper
- Continuous synthesis of N-ethylethylenediamine over supported Cu–Zn–La catalysts
- Preface
- Enzyme-assisted extraction of citrus essential oil
- Preface
- Experimental investigations of liquid flow in pipe with flat internal baffles