Home Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water
Article
Licensed
Unlicensed Requires Authentication

Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water

  • Alessandro Sacchetti EMAIL logo , Filippo Rossi EMAIL logo , Arianna Rossetti , Roberto Pesa and Emanuele Mauri
Published/Copyright: February 2, 2016
Become an author with De Gruyter Brill

Abstract

Chiral products play an important role particularly in the field of medicinal chemistry, where it is known that enantiomers often have very different biological properties and effects. One of the most powerful tool to obtain a product as a single enantiomer is asymmetric catalysis. Recently, organocatalysis, i.e. the use of small organic molecules to catalyze enantioselective transformations, has emerged as a prominent field in asymmetric synthesis. In this work, the use of hydrogels as a support for a chiral imidazolidinone organocatalyst (MacMillan catalyst) and its application in the reduction of activated olefins mediated by the Hantzsch ester is reported for the first time. Results showed a good activity of hydrogels in respect to both yield and enantioselection.

References

Annabi, N., Tamayol, A., Uquillas, J. A., Akbari, M., Bertassoni, L. E., Cha, C., Camci-Unal, G., Dokmeci, M. R., Peppas, N. A., & Khademhosseini, A. (2014). 25th Anniversary article: Rational design and applications of hydrogels in regenerative medicine. Advanced Materials, 26, 85–124. DOI: 10.1002/adma.201303233.10.1002/adma.201303233Search in Google Scholar

Atodiresei, I., Vila, C., & Rueping, M. (2015). Asymmetric organocatalysis in continuous flow: Opportunities for impacting industrial catalysis. ACS Catalysis, 5, 1972–1985. DOI: 10.1021/acscatal.5b00002.10.1021/acscatal.5b00002Search in Google Scholar

Blackmond, D. G., Armstrong, A., Coombe, V., & Wells, A. (2007). Water in organocatalytic processes: Debunking the myths. Angewandte Chemie International Edition, 46, 3798–3800. DOI: 10.1002/anie.200604952.10.1002/anie.200604952Search in Google Scholar

Brenna, E., Gatti, F. G., Manfredi, A., Monti, D., & Parmeggiani, F. (2012a). Enoate reductase-mediated preparation of methyl (S)-2-bromobutanoate, a useful key intermediate for the synthesis of chiral active pharmaceutical ingredients. Organic Process Research & Development, 16, 262–268. DOI: 10.1021/op200086t.10.1021/op200086tSearch in Google Scholar

Brenna, E., Gatti, F. G., Monti, D., Parmeggiani, F., & Sacchetti, A. (2012b). Cascade coupling of ene reductases with alcohol dehydrogenases: Enantioselective reduction of prochiral unsaturated aldehydes. ChemCatChem, 4, 653–659. DOI: 10.1002/cctc.201100418.10.1002/cctc.201100418Search in Google Scholar

Brenna, E., Gatti, F. G., Monti, D., Parmeggiani, F., & Sacchetti, A. (2012c). Productivity enhancement of C=C bioreductions by coupling the in situ substrate feeding product removal technology with isolated enzymes. Chemical Communications, 48, 79–81. DOI: 10.1039/c1cc16014a.10.1039/c1cc16014aSearch in Google Scholar

Brenna, E., Cosi, S. L., Ferrandi, E. E., Gatti, F. G., Monti, D., Parmeggiani, F., & Sacchetti, A. (2013a). Substrate scope and synthetic applications of the enantioselective reduction of α-alkyl-β-arylenones mediated by Old Yellow Enzymes. Organic & Biomolecular Chemistry, 11, 2988–2996. DOI: 10.1039/c3ob40076j.10.1039/c3ob40076jSearch in Google Scholar

Brenna, E., Gatti, F. G., Malpezzi, L., Monti, D., Parmeggiani, F., & Sacchetti, A. (2013b). Synthesis of robalzotan, ebalzotan, and rotigotine precursors via the stereoselective multienzymatic cascade reduction of α,β-unsaturated aldehydes. The Journal of Organic Chemistry, 78, 4811–4822. DOI: 10.1021/jo4003097.10.1021/jo4003097Search in Google Scholar

Brenna, E., Gatti, F. G., Monti, D., Parmeggiani, F., Sacchetti, A., & Valoti, J. (2015). Substrate-engineering approach to the stereoselective chemo-multienzymatic cascade synthesis of Nicotiana tabacum lactone. Journal of Molecular Catalysis B: Enzymatic, 114, 77–85. DOI: 10.1016/j.molcatb.2014.12.011.10.1016/j.molcatb.2014.12.011Search in Google Scholar

Dalko, P. I., & Moisan, L. (2001). Enantioselective organocatalysis. Angewandte Chemie International Edition, 40, 3726–3748. DOI: 10.1002/1521-3773(20011015)40:20<3726::aidanie3726>3.0.co;2-d.10.1002/1521-3773(20011015)40:20<3726::aidanie3726>3.0.co;2-dSearch in Google Scholar

Dalko, P. I., & Moisan, L. (2004). In the golden age of organocatalysis. Angewandte Chemie International Edition, 43, 5138–5175. DOI: 10.1002/anie.200400650.10.1002/anie.200400650Search in Google Scholar

Danelli, T., Annunziata, R., Benaglia, M., Cinquini, M., Cozzi, F., & Tocco, G. (2003). Immobilization of catalysts derived from Cinchona alkaloids on modified poly(ethylene glycol). Tetrahedron: Asymmetry, 14, 461–467. DOI: 10.1016/s0957-4166(02)00830-3.10.1016/s0957-4166(02)00830-3Search in Google Scholar

Davoodnia, A., Allameh, S., Fazli, S., & Tavakoli-Hoseini, N. (2011). One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA–SiO2) as an efficient and reusable catalyst. Chemical Papers, 65, 714–720. DOI: 10.2478/s11696-011-0064-8.10.2478/s11696-011-0064-8Search in Google Scholar

Dondoni, A., & Massi, A. (2008). Asymmetric organocatalysis: From infancy to adolescence. Angewandte Chemie International Edition, 47, 4638–4660. DOI: 10.1002/anie.200704684.10.1002/anie.200704684Search in Google Scholar

Ford, M. C., Bertram, J. P., Hynes, S. R., Michaud, M., Li, Q., Young, M., Segal, S. S., Madri, J. A., & Lavik, E. B. (2006). A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proceedings of the National Academy of Sciences of the United States of America, 103, 2512–2517. DOI: 10.1073/pnas.0506020102.10.1073/pnas.0506020102Search in Google Scholar

Giacalone, F., Gruttadauria, M., Agrigento, P., & Noto, R. (2012). Low-loading asymmetric organocatalysis. Chemical Society Reviews, 41, 2406–2447. DOI: 10.1039/c1cs15206h.10.1039/c1cs15206hSearch in Google Scholar

Hayashi, Y. (2006). In water or in the presence of water? Angewandte Chemie International Edition, 45, 8103–8104. DOI: 10.1002/anie.200603378.10.1002/anie.200603378Search in Google Scholar

Hiki, S., & Kataoka, K. (2007). A facile synthesis of azido-terminated heterobifunctional poly(ethylene glycol)s for “click” conjugation. Bioconjugate Chemistry, 18, 2191–2196. DOI: 10.1021/bc700152j.10.1021/bc700152jSearch in Google Scholar

Itsuno, S., & Hassan, M. M. (2014). Polymer-immobilized chiral catalysts. RSC Advances, 4, 52023–52043. DOI: 10.1039/c4ra09561h.10.1039/c4ra09561hSearch in Google Scholar

Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chemistry: Diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 40, 2004–2021. DOI: 10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5.10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5Search in Google Scholar

Lelais, G., & MacMillan, D. W. C. (2006). Modern strategies in organic catalysis: The advent and development of iminium activation. Aldrichimica Acta, 39, 79–87.Search in Google Scholar

MacMillan, D. W. C. (2008). The advent and development of organocatalysis. Nature, 455, 304–308. DOI: 10.1038/nature07367.10.1038/nature07367Search in Google Scholar PubMed

Moses, J. E., & Moorhouse, A. D. (2007). The growing applications of click chemistry. Chemical Society Reviews, 36, 1249–1262. DOI: 10.1039/b613014n.10.1039/b613014nSearch in Google Scholar PubMed

Munirathinam, R., Huskens, J., & Verboom, W. (2015). Supported catalysis in continuous-flow microreactors. Advanced Synthesis & Catalysis, 357, 1093–1123. DOI: 10.1002/adsc.201401081.10.1002/adsc.201401081Search in Google Scholar

Ouellet, S. G., Tuttle, J. B., & MacMillan, D. W. C. (2005). Enantioselective organocatalytic hydride reduction. Journal of the American Chemical Society, 127, 32–33. DOI: 10.1021/ja043834g.10.1021/ja043834gSearch in Google Scholar PubMed

Ouellet, S. G., Walji, A. M., & MacMillan, D. W. C. (2007). Enantioselective organocatalytic transfer hydrogenation reactions using Hantzsch esters. Accounts of Chemical Research, 40, 1327–1339. DOI: 10.1021/ar7001864.10.1021/ar7001864Search in Google Scholar PubMed

Park, S. Y., Lee, J. W., & Song, C. E. (2015). Parts-permillion level loading organocatalysed enantioselective silylation of alcohols. Nature Communications, 6, 7512, DOI: 10.1038/ncomms8512.10.1038/ncomms8512Search in Google Scholar PubMed PubMed Central

Puglisi, A., Benaglia, M., Cinquini, M., Cozzi, F., & Celentano, G. (2004). Enantioselective 1,3-dipolar cycloadditions of unsaturated aldehydes promoted by a poly(ethylene glycol)-supported organic catalyst. European Journal of Organic Chemistry, 2004, 567–573. DOI: 10.1002/ejoc.200300571.10.1002/ejoc.200300571Search in Google Scholar

Rossi, F., Perale, G., Storti, G., & Masi, M. (2012). A library of tunable agarose carbomer-based hydrogels for tissue engineering applications: The role of cross-linkers. Journal of Applied Polymer Science, 123, 2211–2221. DOI: 10.1002/app.34731.10.1002/app.34731Search in Google Scholar

Sacchetti, A., Mauri, E., Sani, M., Masi, M., & Rossi, F. (2014). Microwave-assisted synthesis and click chemistry as simple and efficient strategy for RGD functionalized hydrogels. Tetrahedron Letters, 55, 6817–6820. DOI: 10.1016/j.tetlet.2014.10.069.10.1016/j.tetlet.2014.10.069Search in Google Scholar

Santoro, M., Marchetti, P., Rossi, F., Perale, G., Castiglione, F., Mele, A., & Masi, M. (2011). Smart approach to evaluate drug diffusivity in injectable agar-carbomer hydrogels for drug delivery. The Journal of Physical Chemistry B, 115, 2503–2510. DOI: 10.1021/jp1111394.10.1021/jp1111394Search in Google Scholar PubMed

Seayad, J., & List, B. (2005). Asymmetric organocatalysis. Organic & Biomolecular Chemistry, 3, 719–724. DOI: 10.1039/b415217b.10.1039/b415217bSearch in Google Scholar PubMed

Shi, J. Y., Wang, C. A., Li, Z. J., Wang, Q., Zhang, Y., & Wang, W. (2011). Heterogeneous organocatalysis at work: Functionalization of hollow periodic mesoporous organosilica spheres with MacMillan catalyst. Chemistry – A European Journal, 17, 6206–6213. DOI: 10.1002/chem.201100072.10.1002/chem.201100072Search in Google Scholar PubMed

Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A., & Peppas, N. A. (2009). Hydrogels in regenerative medicine. Advanced Materials, 21, 3307–3329. DOI: 10.1002/adma.200802106.10.1002/adma.200802106Search in Google Scholar PubMed PubMed Central

Zhu, J., Tang, C., Kottke-Marchant, K., & Marchant, R. E. (2009). Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjugate Chemistry, 20, 333–339. DOI: 10.1021/bc800441v.10.1021/bc800441vSearch in Google Scholar PubMed PubMed Central

Received: 2015-7-15
Revised: 2015-9-15
Accepted: 2015-9-22
Published Online: 2016-2-2
Published in Print: 2016-4-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Prevention of degradation of γ-irradiated EPDM using phenolic antioxidants
  3. Original Paper
  4. Differentiation of black, green, herbal and fruit bagged teas based on multi-element analysis using inductively-coupled plasma atomic emission spectrometry
  5. Original Paper
  6. Reaction mechanisms of carbon dioxide methanation
  7. Review
  8. Power consumption and gas–liquid dispersion in turbulently agitated vessels with vertical dual-array tubular coil baffles
  9. Short Communication
  10. Tannins analysis from different medicinal plants extracts using MALDI-TOF and MEKC
  11. Original Paper
  12. Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions
  13. Original Paper
  14. Synthesis of Fe3O4–Ag nanocomposites and their application to enzymeless hydrogen peroxide detection
  15. Original Paper
  16. Possibilities for removal of chlorinated dye Mordant Blue 9 from model waste water
  17. Review
  18. Preparation and properties of gelatin films incorporated with N-hydroxysuccinimide-activated end-bit binary acid
  19. Original Paper
  20. Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2,4,5-triaryl-1 H-imidazoles
  21. Short Communication
  22. Prediction of power consumption in mechanically agitated gassed reactor in viscous batch
  23. Original Paper
  24. Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water
  25. Original Paper
  26. Continuous synthesis of N-ethylethylenediamine over supported Cu–Zn–La catalysts
  27. Preface
  28. Enzyme-assisted extraction of citrus essential oil
  29. Preface
  30. Experimental investigations of liquid flow in pipe with flat internal baffles
Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0232/html
Scroll to top button