Home Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2,4,5-triaryl-1 H-imidazoles
Article
Licensed
Unlicensed Requires Authentication

Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2,4,5-triaryl-1 H-imidazoles

  • Razieh Mirsafaei , Majid M. Heravi EMAIL logo , Shervin Ahmadi and Tayebeh Hosseinnejad
Published/Copyright: February 2, 2016
Become an author with De Gruyter Brill

Abstract

A novel silica-bonded propyl-N-sulfamic acid nanocatalyst (NHSO3H-KIT-5) supported on modified silica mesopore KIT-5 as an organic-inorganic hybrid with high specific surface area was successfully prepared. The 3-aminopropyltriethoxysilane (APTES) on KIT-5 was reacted with chlorosulfonic acid and accurately characterized by the FT-IR, XRD, SEM, EDAXS, and TGA techniques. This heterogeneous and recyclable catalyst catalyzed one pot, multicomponent condensation of benzil, aromatic aldehydes, and ammonium acetate in the presences of 0.05 g of nanocatalyst under solvent-free conditions to afford triaryl-imidazoles in excellent yields. This catalyst showed high catalytic activity under green conditions. This reaction was performed under open air conditions and required no special reaction conditions or chromatographic separation for purification.

Acknowledgements

Professor Heravi is grateful for partial financial support from the Iran National Science Foundation. The authors are thankful to the Iran Polymer and Petrochemical Institute for providing the SEM-EDXS facility, the Kashan University for providing XRD analysis and the Islamic Azad Yazd University for providing IR analysis.

References

Bader, R. F. W., & Essén, H. (1984). The characterization of atomic interactions. The Journal of Chemical Physics, 80, 1943-1960. DOI: 10.1063/1.446956.10.1063/1.446956.Search in Google Scholar

Bader, R. F. W. (1990). Atoms in molecules: A quantum theory. Oxford, UK: Oxford University Press.Search in Google Scholar

Bader, R. F. W. (2000). AIM2000 program, ver. 2.0 [computer software]. Hamilton, Canada: McMaster University.Search in Google Scholar

Bakavoli, M., Eshghi, H., Rahimizadeh, M., Housaindokht, M. R., Mohammadi, A., & Monhemi, H. (2015). Deep eutectic solvent for multi-component reactions: a highly efficient and reusable acidic catalyst for synthesis of 2,4,5-triaryl-1H-imidazoles. Research on Chemical Intermediates, 41, 3497–3505. DOI: 10.1007/s11164-013-1467-7.10.1007/s11164-013-1467-7.Search in Google Scholar

Bamoharram, F. F., Heravi, M. M., Roshani, M., Jahanagir, M., & Gharib, A. (2007). Effective direct esterification of butanol by eco-friendly Preyssler catalyst, [NaP5W30O110]14-. Journal of Molecular Catalysis A: Chemical, 271, 126-130. DOI: 10.1016/j.molcata.2007.02.034.10.1016/j.molcata.2007.02.034.Search in Google Scholar

Blotny, G. (2006). Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis. Tetrahedron, 62, 9507-9522. DOI: 10.1016/j.tet.2006.07.039.10.1016/j.tet.2006.07.039.Search in Google Scholar

Davoodnia, A., Heravi, M. M., Safavi-Rad, Z., & Tavakoli-Hoseini, N. (2010). Green, one-pot, solvent-free synthesis of 1,2,4,5-tetrasubstituted imidazoles using a Br0nsted acidic ionic liquid as novel and reusable catalyst. Synthetic Communications, 40, 2588-2597. DOI: 10.1080/00397910903289271.10.1080/00397910903289271.Search in Google Scholar

Fan, X. S., Qu, Y. Y., Wang, Y. Y., Zhang, X. Y., & Wang, J. J. (2010). Ru(III)-catalyzed oxidation of homopropargyl alcohols in ionic liquid: an efficient and green route to 1,2-allenic ketones. Tetrahedron Letters, 51, 2123-2126. DOI: 10.1016/j.tetlet.2010.02.053.10.1016/j.tetlet.2010.02.053.Search in Google Scholar

Guisnet, M., Barrault, J., Bouchoule, C., Duprez, D., Montassier, C., & Pérot, G. (Eds.) (1988). Heterogeneous catalysis and fine chemicals (Studies in surface science, Vol. 41). Amsterdam, The Netherlands: Elsevier.Search in Google Scholar

Hamon, F., Prié, G., Lecornué, F., & Papot, S. (2009). Cyanuric chloride: an efficient reagent for the Lossen rearrangement. Tetrahedron Letter, 50, 6800-6802. DOI: 10.1016/j.tetlet. 2009.09.115.10.1016/j.tetlet. 2009.09.115.Search in Google Scholar

Hashemi, E., Beheshtiha, Y. S., Ahmadi, S., & Heravi, M. M. (2014). In situ prepared CuI nanoparticles on modified poly(styrene-co-maleic anhydride): an efficient and recyclable catalyst for the azide-alkyne click reaction in water. Transition Metal Chemistry, 39, 593-601. DOI: 10.1007/s11243-014-9838-5.10.1007/s11243-014-9838-5.Search in Google Scholar

Heravi, M. M., Montazeri, N., Rahmizadeh, M., Bakavoli, M., & Ghassemzadeh, M. (2000). Zeolite-induced heterocyclization: a superior method of synthesis of condensed imidazoles. Journal of Chemical Research, 2000, 584-585. DOI: 10.3184/030823400103166274.10.3184/030823400103166274.Search in Google Scholar

Heravi, M. M., Rajabzadeh, G., Bamoharram, F. F., & Seifi, N. (2006a). An eco-friendly catalytic route for synthesis of 4-amino-pyrazolo[3,4-d]pyrimidine derivatives by Keggin heteropolyacids under classical heating and microwave irradiation. Journal of Molecular Catalysis A: Chemical, 256, 238–241. DOI: 10.1016/j.molcata.2006.04.016.10.1016/j.molcata.2006.04.016.Search in Google Scholar

Heravi, M. M., Tajbakhsh, M., Ahmadi, A. N., & Mohajerani, B. (2006b). Zeolites. Efficient and eco-friendly catalysts for the synthesis of benzimidazoles. Monatshefte für Chemie - Chemical Monthly, 137, 175-179. DOI: 10.1007/s00706-005-0407-7.10.1007/s00706-005-0407-7.Search in Google Scholar

Heravi, M. M., Bakhtiari, K., Oskooie, H. A., & Taheri, S. (2007a). Synthesis of 2,4,5-triaryl-imidazoles catalyzed by NiCl2-6H2O under heterogeneous system. Journal of Molecular Catalysis A: Chemical, 263, 279-281. DOI: 10.1016/j. molcata.2006.08.070.10.1016/j.molcata.2006.08.070.Search in Google Scholar

Heravi, M. M., Bakhtiari, K., Daroogheha, Z., & Bamoharram, F. F. (2007b). An efficient synthesis of 2,4,6-triarylpyridines catalyzed by heteropolyacid under solventfree conditions. Catalysis Communications, 8, 1991-1994. DOI: 10.1016/j.catcom.2007.03.028.10.1016/j.catcom.2007.03.028.Search in Google Scholar

Heravi, M. M., Bakhtiari, K., Zadsirjan, V., Bamoharram, F. F., & Heravi, O. M. (2007c). Aqua mediated synthesis of substituted 2-amino-4H-chromenes catalyzed by green and reusable Preyssler heteropolyacid. Bioorganic & Medicinal Chemistry Letters, 17, 4262-4265. DOI: 10.1016/j.bmcl.2007.05.023.10.1016/j.bmcl.2007.05.023.Search in Google Scholar

Heravi, M. M., Derikvand, F., & Bamoharram, F. F. (2007d). Highly efficient, four-component one-pot synthesis of tetra-substituted imidazoles using Keggin-type heteropolyacids as green and reusable catalysts. Journal of Molecular Catalysis A: Chemical, 263, 112-114. DOI: 10.1016/j.molcata.2006.08. 048.10.1016/j.molcata.2006.08.048.Search in Google Scholar

Heravi, M. M., Bakhtiari, K., Fatehi, A., & Bamoharram, F. F. (2008a). A convenient synthesis of bis(indolyl)methanes catalyzed by diphosphooctadecatungstic acid. Catalysis Communications, 9, 289-292. DOI: 10.1016/j.catcom.2007.07. 039.10.1016/j.catcom.2007.07.039.Search in Google Scholar

Heravi, M. M., Derikvand, F., & Haghighi, M. (2008b). Highly efficient, four component, one-pot synthesis of tetrasubstituted imidazoles using a catalytic amount of FeCl3 · 6H2O. Monatshefte für Chemie - Chemical Monthly, 139, 31-33. DOI: 10.1007/s00706-007-0736-9.10.1007/s00706-007-0736-9.Search in Google Scholar

Heravi, M. M., & Sadjadi, S. (2009). Recent developments in use of heteropolyacids, their salts and polyoxometalates in organic synthesis. Journal of the Iranian Chemical Society, 6, 1-54. DOI: 10.1007/bf03246501.10.1007/bf03246501.Search in Google Scholar

Heravi, M. M., Sadjadi, S., Sadjadi, S., Oskooie, H. A., & Bamoharram, F. F. (2009a). Rapid and efficient synthesis of 4(3H)-quinazolinones under ultra sonic irradiation using silica-supported Preyssler nano particles. Ultrasonics Sonochemistry, 16, 708-710. DOI: 10.1016/j.ultsonch.2009.02.010.10.1016/j.ultsonch.2009.02.010.Search in Google Scholar

Heravi, M. M., Sadjadi, S., Sadjadi, S., Oskooie, H. A., & Bamoharram, F. F. (2009b). A convenient synthesis of bis(indolyl)alkanes under ultra sonic irradiation using silica-supported Preyssler nano particles. Ultrasonics Sonochemistry, 16, 718-720. DOI: 10.1016/j.ultsonch.2009.04.004.10.1016/j.ultsonch.2009.04.004.Search in Google Scholar

Heravi, M. M., Tavakoli-Hoseini, N., & Bamoharram, F. F. (2010). Silica-supported Preyssler nano particles: a green, reusable and highly efficient heterogeneous catalyst for the synthesis of carbamatoalkyl naphthols. Green Chemistry Letters and Reviews, 3, 263-267. DOI: 10.1080/1751825100374 9387.10.1080/1751825100374 9387.Search in Google Scholar

Heravi, M. M., & Alishiri, T. (2012). Application of nanomaterials in heterocyclic chemistry. Heterocycles, 85, 545-586. DOI: 10.3987/rev-11-725.10.3987/rev-11-725.Search in Google Scholar

Heravi, M. M., Hashemi, E., Beheshtiha, Y. S., Ahmadi, S., & Hosseinnejad, T. (2014). PdCl2 on modified poly(styrene-co-maleic anhydride): A highly active and recyclable catalyst for the Suzuki-Miyaura and Sonogashira reactions. Journal of Molecular Catalysis A: Chemical, 394, 74-82. DOI: 10.1016/j.molcata.2014.07.001.10.1016/j.molcata.2014.07.001.Search in Google Scholar

Heravi, M. M., Daraie, M., & Zadsirjan, V. (2015). Current advances in the synthesis and biological potencies of tri- and tetra-substituted 1H-imidazoles. Molecular Diversity, 19, 577-623. DOI: 10.1007/s11030-015-9590-6.10.1007/s11030-015-9590-6.Search in Google Scholar

Karimi, A. R., Alimohammadi, Z., & Amini, M. M. (2010). Wells-Dawson heteropolyacid supported on silica: a highly efficient catalyst for synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles. Molecular Diversity, 14, 635-641. DOI: 10.1007/s11030-009-9197-x.10.1007/s11030-009-9197-x.Search in Google Scholar

Khorami, F., & Shaterian, H. R. (2014). Silica-bonded propyl-piperazine-N-sulfamic acid as recyclable solid acid catalyst for preparation of 2-amino-3-cyano-4-aryl-5,10-dioxo-5,10-dihydro-4H-benzo[g]chromenes and hydroxy-substituted naphthalene-1,4-dione derivatives. Chinese Journal of Catalysis, 35, 242-246. DOI: 10.1016/s1872-2067(12)60761-x.10.1016/s1872-2067(12)60761-x.Search in Google Scholar

Khosropour, A. R. (2008). Ultrasound-promoted greener synthesis of 2,4,5-trisubstituted imidazoles catalyzed by Zr(acac)4 under ambient conditions. Ultrasonics Sonochemistry, 15, 659-664. DOI: 10.1016/j.ultsonch.2007.12.005.10.1016/j.ultsonch.2007.12.005.Search in Google Scholar

Kidwai, M., Mothsra, P., Bansal, V., Somvanshi, R. K., Ethayathulla, A. S., Dey, S., & Singh, T. P. (2007). One-pot synthesis of highly substituted imidazoles using molecular iodine: A versatile catalyst. Journal of Molecular Catalysis A: Chemical, 265, 177-182. DOI: 10.1016/j.molcata.2006.10.009.10.1016/j.molcata.2006.10.009.Search in Google Scholar

Kleitz, F., Liu, D. N., Anilkumar, G. M., Park, I. S., Solovyov, L. A., Shmakov, A. N., & Ryoo, R. (2003). Large cage face-centered-cubic Fm3m mesoporous silica: Synthesis and structure. The Journal of Physical Chemistry B, 107, 14296–14300. DOI: 10.1021/jp036136b.10.1021/jp036136b.Search in Google Scholar

Lee, C. T., Yang, W. T., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.10.1103/PhysRevB.37.785.Search in Google Scholar

Li, B. Z., Gu, Q., He, Y. H., Zhao, T. Q., Wang, S. J., Kang, J., & Zhang, Y. M. (2012). Facile synthesis of trisubstituted imidazoles from 1,2-di(furan-2-yl)-2-oxoethyl carboxylates and their chemiluminescence. Comptes Rendus Chimie, 15, 784–792. DOI: 10.1016/j.crci.2012.06.005.10.1016/j.crci.2012.06.005.Search in Google Scholar

Liu, L., Ma, J. J., Ji, L. Y., & Wei, Y. Y. (2008). Molecular sieve promoted copper catalyzed aerobic oxidation of alcohols to corresponding aldehydes or ketones. Journal of Molecular Catalysis A: Chemical, 291, 1-4. DOI: 10.1016/j.molcata.2008.06.001.10.1016/j.molcata.2008.06.001.Search in Google Scholar

Mahdavinia, G. H., Amani, A. M., & Sepehrian, H. (2012). MCM-41-SO3H as a highly efficient sulfonic acid nanoreactor for the rapid and green synthesis of some novel highly substituted imidazoles under solvent-free condition. Chinese Journal of Chemistry, 30, 703-708. DOI: 10.1002/cjoc.201280008.10.1002/cjoc.201280008.Search in Google Scholar

Mannam, S., & Sekar, G. (2008). CuCl catalyzed oxidation of aldehydes to carboxylic acids with aqueous tert-butyl hydroperoxide under mild conditions. Tetrahedron Letters, 49, 1083-1086. DOI: 10.1016/j.tetlet.2007.11.198.10.1016/j.tetlet.2007.11.198.Search in Google Scholar

Martín, S. E., & Garrone, A. (2003). Efficient solvent-free iron(III) catalyzed oxidation of alcohols by hydrogen peroxide. Tetrahedron Letters, 44, 549-552. DOI: 10.1016/s0040-4039(02)02569-8.10.1016/s0040-4039(02)02569-8.Search in Google Scholar

Mirsafaei, R., Heravi, M. M., Ahmadi, S., Moslemin, M. H., & Hosseinnejad, T. (2015). In situ prepared copper nanoparticles on modified KIT-5 as an efficient recyclable catalyst and its applications in click reactions in water. Journal of Molecular Catalysis A: Chemical, 402, 100-108. DOI: 10.1016/j.molcata.2015.03.006.10.1016/j.molcata.2015.03.006.Search in Google Scholar

Moghaddas, M., Davoodnia, A., Heravi, M. M., & Tavakoli-Hoseini, N. (2012). Sulfonated carbon catalyzed Biginelli reaction for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and -thiones. Chinese Journal of Catalysis, 33, 706-710. DOI: 10.1016/s1872-2067(11)60377-x.10.1016/s1872-2067(11)60377-x.Search in Google Scholar

Mohammadi, A. A., Mivechi, M., & Kefayati, H. (2008). Potassium aluminum sulfate (alum): an efficient catalyst for the one-pot synthesis of trisubstituted imidazoles. Monatshefte für Chemie - Chemical Monthly, 139, 935-937. DOI: 10.1007/s00706-008-0875-7.10.1007/s00706-008-0875-7.Search in Google Scholar

Mohammed, A. F., Kokare, N. D., Sangshetti, J. N., & Shinde, D. B. (2007). Sulphanilic acid catalyzed facile one-pot synthesis of 2,4,5-triarylimidazoles from benzil/benzoin and aromatic aldehydes. Journal of the Korean Chemical Society, 51, 418-422. DOI: 10.5012/jkcs.2007.51.5.418.10.5012/jkcs.2007.51.5.418.Search in Google Scholar

Nemati, F., Heravi, M. M., & Saeedi Rad, R. (2012). Nano-Fe304 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for highly efficient Knoevenagel condensation and Michael addition reactions of aromatic aldehydes with 1,3-cyclic diketones. Chinese Journal of Catalysis, 33, 1825-1831. DOI: 10.1016/s1872-2067(11)60455-5.10.1016/s1872-2067(11)60455-5.Search in Google Scholar

Nouri Sefat, M., Deris, A., & Niknam, K. (2011). Preparation of silica-bonded propyl-diethylene-triamine-N-sulfamic acid as a recyclable catalyst for chemoselective synthesis of 1,1-diacetates. Chinese Journal of Chemistry, 29, 2361-2367. DOI: 10.1002/cjoc.201180403.10.1002/cjoc.201180403.Search in Google Scholar

Oskooie, H. A., Alimohammadi, Z., & Heravi, M. M. (2006a). Microwave-assisted solid-phase synthesis of 2,4,5-triaryl imidazoles in solventless system: An improved protocol. Heteroatom Chemistry, 17, 699-702. DOI: 10.1002/hc.20237.10.1002/hc.20237.Search in Google Scholar

Oskooie, H. A., Heravi, M. M., Bakhtiari, K., Zadsirjan, V., & Bamoharram, F. F. (2006b). H14[NaP5W30O110] as an efficient catalyst for the one-pot synthesis of α-amino nitriles. Synlett, 2006, 1768-1770. DOI: 10.1055/s-2006-944206.10.1055/s-2006-944206.Search in Google Scholar

Sadeghi, B., Mirjalili, B. B. F., & Hashemi, M. M. (2008). BF3-SiO2: an efficient reagent system for the one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles. Tetrahedron Letters, 49, 2575-2577. DOI: 10.1016/j.tetlet.2008.02.100.10.1016/j.tetlet.2008.02.100.Search in Google Scholar

Samai, S., Nandi, G. C., Singh, P., & Singh, M. S. (2009). L-Proline: an efficient catalyst for the one-pot synthesis of2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles. Tetrahedron, 65, 10155-10161. DOI: 10.1016/j.tet.2009.10.019.10.1016/j.tet.2009.10.019.Search in Google Scholar

Sarshar, S., Siev, D., & Mjalli, A. M. M. (1996). Imidazole libraries on solid support. Tetrahedron Letters, 37, 835-838. DOI: 10.1016/0040-4039(95)02334-8.10.1016/0040-4039(95)02334-8.Search in Google Scholar

Schaubroeck, D., De Baets, J., Desmet, T., Van Vlierberghe, S., Schacht, E., & Van Calster, A. (2009). Introduction of amino groups on the surface of thin photo definable epoxy resin layers via chemical modification. Applied Surface Science, 255, 8780-8787. DOI: 10.1016/j.apsusc.2009.06.043.10.1016/j.apsusc.2009.06.043.Search in Google Scholar

Schaubroeck, D., De Baets, J., Desmet, T., Dubruel, P., Schacht, E., Van Vaeck, L., & Van Calster, A. (2010). Surface modification of an epoxy resin with polyamines via cyanuric chloride coupling. Applied Surface Science, 256, 6269-6278. DOI: 10.1016/j.apsusc.2010.04.003.10.1016/j.apsusc.2010.04.003.Search in Google Scholar

Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H., Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M., & Montgomery, J. A., Jr. (1993). General atomic and molecular electronic structure system. Journal of Computational Chemistry, 14, 1347-1363. DOI: 10.1002/jcc.540141112.10.1002/jcc.540141112.Search in Google Scholar

Shaabani, A., & Rahmati, A. (2006). Silica sulfuric acid as an efficient and recoverable catalyst for the synthesis of trisubstituted imidazoles. Journal of Molecular Catalysis A: Chemical, 249, 246-248. DOI: 10.1016/j.molcata.2006.01.006.10.1016/j.molcata.2006.01.006.Search in Google Scholar

Sharma, S. D., Hazarika, P., & Konwar, D. (2008). An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by InCl3-3H2O. Tetrahedron Letters, 49, 2216-2220. DOI: 10.1016/j.tetlet.2008.02. 053.10.1016/j.tetlet.2008.02. 053.Search in Google Scholar

Sharma, R. K., & Sharma, C. (2011). Zirconium(IV)-modified silica gel: Preparation, characterization and catalytic activity in the synthesis of some biologically important molecules. Catalysis Communications, 12, 327-331. DOI: 10.1016/j.catcom.2010.10.011.10.1016/j.catcom.2010.10.011.Search in Google Scholar

Shvo, Y., & Goldman-Lev, V. (2002). Catalytic oxidation of alcohols with allyl diethyl phosphate and palladium acetate. Journal of Organometallic Chemistry, 650, 151-156. DOI: 10.1016/s0022-328x(02)01177-4.10.1016/s0022-328x(02)01177-4.Search in Google Scholar

Siddiqui, S. A., Narkhede, U. C., Palimkar, S. S., Daniel, T., Lahoti, R. J., & Srinivasan, K. V. (2005). Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl imidazoles from aryl aldehydes and 1,2-diketones or α-hydroxyketone. Tetrahedron, 61, 3539-3546. DOI: 10.1016/j.tet.2005.01.116.10.1016/j.tet.2005.01.116.Search in Google Scholar

Silva, A. R., Freire, C., de Castro, B., Freitas, M. M. A., & Figueiredo, J. L. (2001). Anchoring of a nickel(II) Schiff base complex onto activated carbon mediated by cyanuric chloride. Microporous and Mesoporous Materials, 46, 211-221. DOI: 10.1016/s1387-1811(01)00297-9.10.1016/s1387-1811(01)00297-9.Search in Google Scholar

Silva, A. R., Wilson, K., Clark, J. H., & Freire, C. (2006). Covalent attachment of chiral manganese(III) salen complexes onto functionalised hexagonal mesoporous silica and application to the asymmetric epoxidation of alkenes. Microporous and Mesoporous Materials, 91, 128-138. DOI: 10.1016/j.micromeso.2005.11.032.10.1016/j.micromeso.2005.11.032.Search in Google Scholar

Silva, A. R., Budarin, V., Clark, J. H., Freire, C., & de Castro, B. (2007). Organo-functionalized activated carbons as supports for the covalent attachment of a chiral man-ganese(III) salen complex. Carbon, 45, 1951-1964. DOI: 10.1016/j.carbon.2007.06.013.10.1016/j.carbon.2007.06.013.Search in Google Scholar

Suib, S. L. (2013). New and future developments in catalysis. Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/b978-0-444-53874-1.00022-6.10.1016/b978-0-444-53874-1.00022-6.Search in Google Scholar

Tao, F., Nguyen, L., & Zhang, S. (2014). Introduction: Synthesis and catalysis on metal nanoparticles. In F. Tao (Ed.), Metal nanoparticles for catalysis: Advances and applications (RSC Catalysis Series, pp. 1-5). Cambridge, UK: The Royal Society of Chemistry. DOI: 10.1039/9781782621034-00001.10.1039/9781782621034-00001.Search in Google Scholar

Wang, X. B., He, L., Jian, T. Y., & Ye, S. (2012). Cyclic phosphoric acid catalyzed one-pot, four-component synthesis of 1,2,4,5-tetrasubstituted imidazoles. Chinese Chemical Letters, 23, 13-16. DOI: 10.1016/j.cclet.2011.09.018.10.1016/j.cclet.2011.09.018.Search in Google Scholar

Zeinali-Dastmalbaf, M., Davoodnia, A., Heravi, M. M., Tavakoli-Hoseini, N., Khojastehnezhad, A., & Zamani, H. A. (2011). Silica gel-supported polyphosphoric acid (PPA-SiO2) catalyzed one-pot multi-component synthesis of 3,4-dihydropyrimidin-2(1H)-ones and -thiones: An efficient method for the Biginelli reaction. Bulletin of Korean Chemical Society, 32, 656-658. DOI: 10.5012/bkcs.2011.32.2.656.10.5012/bkcs.2011.32.2.656.Search in Google Scholar

Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120, 215-241. DOI: 10.1007/s00214-007-0310-x.10.1007/s00214-007-0310-x.Search in Google Scholar

Zhao, X. N., Hu, H. C., Zhang, F. J., & Zhang, Z. H. (2014). Magnetic CoFe2O4 nanoparticle immobilized N-propyl di-ethylenetriamine sulfamic acid as an efficient and recyclable catalyst for the synthesis of amides via the Ritter reaction. Applied Catalysis A: General, 482, 258-265. DOI: 10.1016/j.apcata.2014.06.006.10.1016/j.apcata.2014.06.006.Search in Google Scholar

Received: 2015-6-16
Revised: 2015-9-5
Accepted: 2015-9-16
Published Online: 2016-2-2
Published in Print: 2016-4-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Prevention of degradation of γ-irradiated EPDM using phenolic antioxidants
  3. Original Paper
  4. Differentiation of black, green, herbal and fruit bagged teas based on multi-element analysis using inductively-coupled plasma atomic emission spectrometry
  5. Original Paper
  6. Reaction mechanisms of carbon dioxide methanation
  7. Review
  8. Power consumption and gas–liquid dispersion in turbulently agitated vessels with vertical dual-array tubular coil baffles
  9. Short Communication
  10. Tannins analysis from different medicinal plants extracts using MALDI-TOF and MEKC
  11. Original Paper
  12. Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions
  13. Original Paper
  14. Synthesis of Fe3O4–Ag nanocomposites and their application to enzymeless hydrogen peroxide detection
  15. Original Paper
  16. Possibilities for removal of chlorinated dye Mordant Blue 9 from model waste water
  17. Review
  18. Preparation and properties of gelatin films incorporated with N-hydroxysuccinimide-activated end-bit binary acid
  19. Original Paper
  20. Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2,4,5-triaryl-1 H-imidazoles
  21. Short Communication
  22. Prediction of power consumption in mechanically agitated gassed reactor in viscous batch
  23. Original Paper
  24. Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water
  25. Original Paper
  26. Continuous synthesis of N-ethylethylenediamine over supported Cu–Zn–La catalysts
  27. Preface
  28. Enzyme-assisted extraction of citrus essential oil
  29. Preface
  30. Experimental investigations of liquid flow in pipe with flat internal baffles
Downloaded on 27.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0228/html
Scroll to top button