Home Tannins analysis from different medicinal plants extracts using MALDI-TOF and MEKC
Article
Licensed
Unlicensed Requires Authentication

Tannins analysis from different medicinal plants extracts using MALDI-TOF and MEKC

  • Alina Oana Matei , Florentina Gatea , Eugenia Dumitra Teodor and Gabriel Lucian Radu EMAIL logo
Published/Copyright: February 2, 2016
Become an author with De Gruyter Brill

Abstract

The matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF) and micellar electrokinetic chromatography (MEKC) methods were used to identify and quantify five tannins, (+)-catechin, (–)-epigallocatechin, (–)-epigallocatechin gallate, (–)-epicatechin gallate and (–)-epicatechin, from aqueous, ethanolic and acetonic extracts of Calendula officinalis, Hypericum, perforatum, Galium verum and Origanum vulgare. The MALDI-TOF technique was used for screening tannins monomers and oligomers in plant extracts. The sandwich method and matrix 2,5-dihydroxybenzoic acid with a concentration of 10 mg mL–1 in acetonitrile/ultrapure water/trifluoroacetic acid (20 : 80 : 0.1, vol.) were used. The electrophoretic method developed for the separation and quantification of 5 catechins in 15 min exhibited good efficiency and precision, low limits of detection (0.0032–0.0153 μg mL–1) and quantification (0.0096–0.0466 μg mL–1). The correlation coefficients (R2) exceeded 0.9986 and the recovery values ranged between 94.25 % and 102.50 %. The present work provides new information on some of the less studied compounds present in plants frequently used in traditional medicine.

Acknowledgements.

This work was supported by Partnership in priority areas-PN II programme, developed with the support of MEN-UEFISCDI project no. 202/2014 (NEW-BIOVECT) and NUCLEU-BIODIV-PN 09-360106/2009.

References

Ananingsih, V. K., Sharma, A., & Zhou, W. B. (2013). Green tea catechins during food processing and storage: A review on stability and detection. Food Research International, 50, 469–479. DOI: 10.1016/j.foodres.2011.03.004.10.1016/j.foodres.2011.03.004Search in Google Scholar

Arce, L., Rios, A., & Valcárcel, M. (1998). Determination of anti-carcinogenic polyphenols present in green tea using capillary electrophoresis coupled to a flow injection system. Journal of Chromatography A, 827, 113–120. DOI: 10.1016/s0021-9673(98)00737-7.10.1016/s0021-9673(98)00737-7Search in Google Scholar

Bilia, A. R., Bergonzi, M. C., Morgenni, F., Mazzi, G., & Vincieri, F. F. (2001). Evaluation of chemical stability of St. John’s wort commercial extract and some preparations. International Journal of Pharmaceutics, 213, 199–208. DOI: 10.1016/s0378-5173(00)00660-8.10.1016/s0378-5173(00)00660-8Search in Google Scholar

Bonoli, M., Colabufalo, P., Pelillo, M., Toschi, T. G., & Lercker, G. (2003). Fast determination of catechins and xanthines in tea beverages by micellar electrokinetic chromatography. Journal of Agricultural and Food Chemistry, 51, 1141–1147. DOI: 10.1021/jf020907b.10.1021/jf020907bSearch in Google Scholar PubMed

Chang, C. L., & Wu, R. T. (2011). Quantification of (+)- catechin and (–)-epicatechin in coconut water by LC-MS. Food Chemistry, 126, 710–717. DOI: 10.1016/j.foodchem. 2010.11.034.10.1016/j.foodchem.2010.11.034Search in Google Scholar

Chen, Q. S., Zhao, J. W., Chaitep, S. P., & Guo, Z. M. (2009). Simultaneous analysis of main catechins contents in green tea (Camellia sinensis (L.)) by Fourier transform near infrared reflectance (FT-NIR) spectroscopy. Food Chemistry, 113, 1272–1277. DOI: 10.1016/j.foodchem.2008.08.042.10.1016/j.foodchem.2008.08.042Search in Google Scholar

Council of Europe (2010). European pharmacopoeia, (7th ed.) Strasbourg, France: Council of Europe.Search in Google Scholar

Danila, A. O., Gatea, F., & Radu, G. L. (2011). Polyphenol composition and antioxidant activity of selected medicinal herbs. Chemistry of Natural Compounds, 47, 22–26. DOI: 10.1007/s10600-011-9822-7.10.1007/s10600-011-9822-7Search in Google Scholar

De Falco, E., Mancini, E., Roscigno, G., Mignola, E., Taglialatela-Scafati, O., & Senatore, F. (2013). Chemical composition and biological activity of essential oils of Origanum vulgare L. subsp. vulgare L. under different growth conditions. Molecules, 18, 14948–14960. DOI: 10.3390/molecules181214 948.10.3390/molecules181214948Search in Google Scholar PubMed PubMed Central

Del Rio, D., Stewart, A. J., Mullen, W., Burns, J., Lean, M. E. J., Brighenti, F., & Crozier, A. (2004). HPLC-MS n analysis of phenolic compounds and purine alkaloids in green and black tea. Journal of Agricultural and Food Chemistry, 52, 2807–2815. DOI: 10.1021/jf0354848.10.1021/jf0354848Search in Google Scholar PubMed

Flamini, R. (2003). Mass spectrometry in grape and wine chemistry. Part I: Polyphenols. Mass Spectrometry Reviews, 22, 218–250. DOI: 10.1002/mas.10052.10.1002/mas.10052Search in Google Scholar PubMed

Glavnik, V., Simonovska, B., & Vovk, I. (2009). Densitometric determination of (+)-catechin and (–)-epicatechin by 4-dimethylaminocinnamaldehyde reagent. Journal of Chromatography A, 1216, 4485–4491. DOI: 10.1016/j.chroma. 2009.03.026.10.1016/j.chroma.2009.03.026Search in Google Scholar

Gürbüz, O., Göçmen, D., Dağdelen, F., Gürsoy, M., Aydin, S., Şahin, İ., Büyükuysal, L., & Usta, M. (2007). Determination of flavan-3-ols and trans-resveratrol in grapes and wine using HPLC with fluorescence detection. Food Chemistry, 100, 518–525. DOI: 10.1016/j.foodchem.2005.10.008.10.1016/j.foodchem.2005.10.008Search in Google Scholar

Hoong, Y. B., Pizzi, A., Tahir, P. M., & Pasch, H. (2010). Characterization of Acacia mangium polyflavonoid tannins by MALDI-TOF mass spectrometry and CP-MAS 13C NMR. European Polymer Journal, 46, 1268–1277. DOI: 10.1016/j.eurpolymj.2010.03.002.10.1016/j.eurpolymj.2010.03.002Search in Google Scholar

Horie, H., & Kohata, K. (2000). Analysis of tea components by high-performance liquid chromatography and highperformance capillary electrophoresis. Journal of Chromatography A, 881, 425–438. DOI: 10.1016/s0021-9673(99)01345-x.10.1016/s0021-9673(99)01345-xSearch in Google Scholar

Horie, N., Hirabayashi, N., Takahashi, Y., Miyauchi, Y., Taguchi, H., & Takeishi, K. (2005). Synergistic effect of green tea catechins on cell growth and apoptosis induction in gastric carcinoma cells. Biological & Pharmaceutical Bulletin, 28, 574–579. DOI: 10.1248/bpb.28.574.10.1248/bpb.28.574Search in Google Scholar PubMed

Jáč, P., Polášek, M., & Pospíšilová, M. (2006). Recent trends in the determination of polyphenols by electromigration methods. Journal of Pharmaceutical and Biomedical Analysis, 40, 805–814. DOI: 10.1016/j.jpba.2005.12.008.10.1016/j.jpba.2005.12.008Search in Google Scholar PubMed

Khan, N., & Mukhtar, H. (2008). Multitargeted therapy of cancer by green tea polyphenols. Cancer Letters, 269, 269–280. DOI: 10.1016/j.canlet.2008.04.014.10.1016/j.canlet.2008.04.014Search in Google Scholar PubMed PubMed Central

Khanbabaee, K., & van Ree, T. (2001). Tannins: Classification and definition. Natural Product Reports, 18, 641–649. DOI: 10.1039/b101061l.10.1039/b101061lSearch in Google Scholar PubMed

Kolouchová-Hanzlíková, I., Melzoch, K., Filip, V., & Šmidrkal, J. (2004). Rapid method for resveratrol determination by HPLC with electrochemical and UV detections in wines. Food Chemistry, 87, 151–158. DOI: 10.1016/j.foodchem. 2004.01.028.10.1016/j.foodchem.2004.01.028Search in Google Scholar

Lakić, N., Mimica-Dukić, N., Isak, J., & Božin, B., (2010). Antioxidant properties of Galium verum L. (Rubiaceae) extracts. Open Life Sciences, 5, 331–337. DOI: 10.2478/s11535-010-0022-4.10.2478/s11535-010-0022-4Search in Google Scholar

Li, Y. G., Tanner, G., & Larkin, P. (1996). The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. Journal of the Science of Food and Agriculture, 70, 89–101. DOI: 10.1002/(sici)1097-0010(199601)70:1<89::aid-jsfa470>3.0.co;2-n.10.1002/(sici)1097-0010(199601)70:1<89::aid-jsfa470>3.0.co;2-nSearch in Google Scholar

Liu, C. M., Chen, C. Y., & Lin, Y. M. (2014). Estimation of tea catechin levels using micellar electrokinetic chromatography: A quantitative approach. Food Chemistry, 150, 145–150. DOI: 10.1016/j.foodchem.2013.10.140.10.1016/j.foodchem.2013.10.140Search in Google Scholar

López, M. M. C., Vilarińo, J. M. L., Rodríguez, M. V. G., & Losada, L. F. B. (2011). Development, validation and application of micellar electrokinetic capillary chromatography method for routine analysis of catechins, quercetin and thymol in natural samples. Microchemical Journal, 99, 461–469. DOI: 10.1016/j.microc.2011.06.023.10.1016/j.microc.2011.06.023Search in Google Scholar

Matei, A. O., Gatea, F., & Radu, G. L. (2015). Analysis of phenolic compounds in some medicinal herbs by LC-MS. Journal of Chromatographic Science, 53, 1147–1154. DOI: 10.1093/chromsci/bmu177.10.1093/chromsci/bmu177Search in Google Scholar

Menet, M. C., Sang, S. M., Yang, C. S., Ho, C. T., & Rosen, R. T. (2004). Analysis of theaflavins and thearubigins from black tea extract by MALDI-TOF mass spectrometry. Journal of Agricultural and Food Chemistry, 52, 2455–2461. DOI: 10.1021/jf035427e.10.1021/jf035427eSearch in Google Scholar

Merken, H. M., & Beecher, G. R. (2000). Liquid chromatographic method for the separation and quantification of prominent flavonoid aglycones. Journal of Chromatography A, 897, 177–184. DOI: 10.1016/s0021-9673(00)00826-8.10.1016/s0021-9673(00)00826-8Search in Google Scholar

Mirza, M., Najafpour, N. M., & Dini, M. (2004). Essential oil of Galium verum L. from Iran. Iranian Journal of Pharmaceutical Research, 3, 88–88.Search in Google Scholar

Navarrete, P., Pizzi, A., Pasch, H., Rode, K., & Delmotte, L. (2010). MALDI-TOF and 13C NMR characterization of maritime pine industrial tannin extract. Industrial Crops and Products, 32, 105–110. DOI: 10.1016/j.indcrop.2010.03.010.10.1016/j.indcrop.2010.03.010Search in Google Scholar

Olofson, T. C., Alstefjord, M., Nilson, B., Butler, E., & Vasquez, A. (2014). Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. International Journal of Systematic and Evolutionary Microbiology, 64, 3109–3119. DOI: 10.1099/ijs.0.059600-0.10.1099/ijs.0.059600-0Search in Google Scholar

Pizzi, A. (1983). Wood adhesives: Chemistry and technology (pp. 174–244). New York, NY, USA: Marcel Dekker.Search in Google Scholar

Pomponio, R., Gotti, R., Luppi, B., & Cavrini, V. (2003). Microemulsion electrokinetic chromatography for the analysis of green tea catechins: Effect of the cosurfactant on the separation selectivity. Electrophoresis, 24, 1658–1667. DOI: 10.1002/elps.200305391.10.1002/elps.200305391Search in Google Scholar

Quiroga, R. P., Grosso, N. R., Lante, A., Lomolino, G., Zygadlo, J. A., & Nepote, V. (2013). Chemical composition, antioxidant activity and anti-lipase activity of Origanum vulgare and Lippia turbinata essential oils. International Journal of Food Science & Technology, 48, 642–649. DOI: 10.1111/ijfs. 12011.10.1111/ijfs.12011Search in Google Scholar

Rahim, A. A., Nofrizal, S., & Saad, B. (2014). Rapid tea catechins and caffeine determination by HPLC using microwave-assisted extraction and silica monolithic column. Food Chemistry, 147, 262–268. DOI: 10.1016/j.foodchem.2013.09.131.10.1016/j.foodchem.2013.09.131Search in Google Scholar

Re, T. A., Mooney, D., Antignac, E., Dufour, E., Bark, I., Srinivasan, V., & Nohynek, G. (2009). Application of the threshold of toxicological concern approach for the safety evaluation of calendula flower (Calendula officinalis) petals and extracts used in cosmetic and personal care products. Food and Chemical Toxicology, 47, 1246–1254. DOI: 10.1016/j.fct.2009.02.016.10.1016/j.fct.2009.02.016Search in Google Scholar

Reed, J. D., Krueger, C. G., & Vestling, M. M. (2005). MALDI-TOF mass spectrometry of oligomeric food polyphenols. Phytochemistry, 66, 2248–2263. DOI: 10.1016/j.phytochem. 2005.05.015.10.1016/j.phytochem.2005.05.015Search in Google Scholar

Sang, S. M., Lambert, J. D., Ho, C. T., & Yang, C. S. (2011). The chemistry and biotransformation of tea constituents. Pharmacological Research, 64, 87–99. DOI: 10.1016/j.phrs.2011.02.007.10.1016/j.phrs.2011.02.007Search in Google Scholar

Tabrez, S., Priyadarshini, M., Urooj, M., Shakil, S., Ashraf, G. M., Khan, M. S., Kamal, M. A., Alam, Q., Jabir, N. R., Abuzenadah, A. M., Chaudhary, A. G. A., & Damanhouri, G. A. (2013). Cancer chemoprevention by polyphenols and their potential application as nanomedicine. Journal of Environmental Science and Health, Part C, 31, 67–98. DOI: 10.1080/10590501.2013.763577.10.1080/10590501.2013.763577Search in Google Scholar

Tan, H. P., Xu, W. P., Zhao, A. P., Zhou, L. L., Liu, M. D., Tan, F. Y., Zou, Y., & Wang, Y. J. (2012). Determination of catechins and purine alkaloids in tea by high performance liquid chromatography. Analytical Letters, 45, 2530–2537. DOI: 10.1080/00032719.2012.694130.10.1080/00032719.2012.694130Search in Google Scholar

Terabe, S., Otsuka, K., Ichikawa, K., Tsuchiya, A., & Ando, T. (1984). Electrokinetic separations with micellar solutions and open-tubular capillaries. Analytical Chemistry, 56, 111–113. DOI: 10.1021/ac00265a031.10.1021/ac00265a031Search in Google Scholar

Tsanova-Savova, S., Ribarova, F., & Gerova, M. (2005). (+)- Catechin and (–)-epicatechin in Bulgarian fruits. Journal of Food Composition and Analysis, 18, 691–698. DOI: 10.1016/j.jfca.2004.06.008.10.1016/j.jfca.2004.06.008Search in Google Scholar

Vázquez, G., Pizzi, A., Freire, M. S., Santos, J., Antorrena, G., & González-Âlvarez, J. (2012). MALDI-TOF, HPLC-ESI-TOF and 13C-NMR characterization of chestnut (Castanea sativa) shell tannins for wood adhesives. Wood Science and Technology, 47, 523–535. DOI: 10.1007/s00226-012-0513-8.10.1007/s00226-012-0513-8Search in Google Scholar

Weiss, D. J., & Anderton, C. R. (2003). Determination of catechins in matcha green tea by micellar electrokinetic chromatography. Journal of Chromatography A, 1011, 173–180. DOI: 10.1016/s0021-9673(03)01133-6.10.1016/s0021-9673(03)01133-6Search in Google Scholar

Yang, B., Arai, K., & Kusu, F. (2000). Determination of catechins in human urine subsequent to tea ingestion by high-performance liquid chromatography with electrochemical detection. Analytical Biochemistry, 283, 77–82. DOI: 10.1006/abio.2000.4624.10.1006/abio.2000.4624Search in Google Scholar PubMed

Ye, N. S., Li, J., Wang, Y. X., & Ma, J. C. (2014). Determination of catechins in tea by micellar electrokinetic chromatography with a grapheme oxide-coated capillary. Instrumentation Science & Technology, 42, 605–617. DOI: 10.1080/10739149.2014.930876.10.1080/10739149.2014.930876Search in Google Scholar

Received: 2015-4-23
Revised: 2015-7-21
Accepted: 2015-9-9
Published Online: 2016-2-2
Published in Print: 2016-4-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Prevention of degradation of γ-irradiated EPDM using phenolic antioxidants
  3. Original Paper
  4. Differentiation of black, green, herbal and fruit bagged teas based on multi-element analysis using inductively-coupled plasma atomic emission spectrometry
  5. Original Paper
  6. Reaction mechanisms of carbon dioxide methanation
  7. Review
  8. Power consumption and gas–liquid dispersion in turbulently agitated vessels with vertical dual-array tubular coil baffles
  9. Short Communication
  10. Tannins analysis from different medicinal plants extracts using MALDI-TOF and MEKC
  11. Original Paper
  12. Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions
  13. Original Paper
  14. Synthesis of Fe3O4–Ag nanocomposites and their application to enzymeless hydrogen peroxide detection
  15. Original Paper
  16. Possibilities for removal of chlorinated dye Mordant Blue 9 from model waste water
  17. Review
  18. Preparation and properties of gelatin films incorporated with N-hydroxysuccinimide-activated end-bit binary acid
  19. Original Paper
  20. Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2,4,5-triaryl-1 H-imidazoles
  21. Short Communication
  22. Prediction of power consumption in mechanically agitated gassed reactor in viscous batch
  23. Original Paper
  24. Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water
  25. Original Paper
  26. Continuous synthesis of N-ethylethylenediamine over supported Cu–Zn–La catalysts
  27. Preface
  28. Enzyme-assisted extraction of citrus essential oil
  29. Preface
  30. Experimental investigations of liquid flow in pipe with flat internal baffles
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0222/html
Scroll to top button