Home Life Sciences Reaction mechanisms of carbon dioxide methanation
Article
Licensed
Unlicensed Requires Authentication

Reaction mechanisms of carbon dioxide methanation

  • Erlisa Baraj EMAIL logo , Stanislav Vagaský , Tomáš Hlinčik , Karel Ciahotný and Viktor Tekáč
Published/Copyright: January 22, 2016
Become an author with De Gruyter Brill

Abstract

Constant increase of carbon dioxide emissions from anthropogenic activities leads to the search of options for its recycling and utilization. Although recycled CO2 utilization as a raw material for the production of chemicals and propellants can be challenging, it is the most sustainable way to mitigate its emissions. Among the most promising applications of CO2 is its catalytic fixation with hydrogen via the methanation reaction to methane. CO2 methanation, depending on the used catalyst and overall reaction conditions, can proceed through different mechanism or pathways. A literature review on the methanation reaction mechanism shows that CO2 can be converted to methane either by direct methanation or through the formation of a CO intermediate. This article analyses the proposed reaction mechanisms of CO2 methanation.

References

Abelló, S., Berrueco, C., & Montané, D. (2013). High-loaded nickel–alumina catalyst for direct CO2 hydrogenation into synthetic natural gas (SNG). Fuel, 113, 598–609. DOI: 10.1016/j.fuel.2013.06.012.10.1016/j.fuel.2013.06.012Search in Google Scholar

Altenbuchner, P. T., Kissling, S., & Rieger, B. (2014). Carbon dioxide as C-1 block for the synthesis of polycarbonates. In B. M. Bhanage, & M. Arai (Eds.), Transformation and utilization of carbon dioxide (pp. 163–200). Berlin, Germany: Springer. DOI: 10.1007/978-3-642-44988-8.7.10.1007/978-3-642-44988-8.7Search in Google Scholar

Andersson, M. P., Abild-Pedersen, F., Remediakis, I. N., Bligaard, T., Jones, G., Engbœk, J., Lytken, O., Horch, S., Nielsen, J. H., Sehested, J., Rostrup-Nielsen, J. R., Norskov, J. K., & Chorkendorff, I. (2008) Structure sensitivity of the methanation reaction: H2-Induced CO dissociation on nickel surfaces. Journal of Catalysis, 255, 6–19. DOI: 10.1016/j.jcat.2007.12.016.10.1016/j.jcat.2007.12.016Search in Google Scholar

Aziz, M. A. A., Jalil, A. A., Triwahyono, S., Mukti, R. R., Taufiq-Yap, Y. H., & Sazegar, M. R. (2014a). Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Applied Catalysis B, 147, 359–368. DOI: 10.1016/j.apcatb.2013.09.015.10.1016/j.apcatb.2013.09.015Search in Google Scholar

Aziz, M. A. A., Jalil, A. A., Triwahyono, S., & Sidik, S. M. (2014b). Methanation of carbon dioxide on metal-promoted mesostructured silica nanoparticles. Applied Catalysis A, 486, 115–122. DOI: 10.1016/j.apcata.2014.08.022.10.1016/j.apcata.2014.08.022Search in Google Scholar

Barrault, J., & Alouche, A. (1990). Isotopic exchange measurements of the rate of interconversion of carbon monoxide and carbon dioxide over nickel supported on rare earth oxides. Applied Catalysis, 58, 255–267. DOI: 10.1016/s01669834(00)82294-0.10.1016/s01669834(00)82294-0Search in Google Scholar

Beuls, A., Swalus, C., Jacquemin, M., Heyen, G., Karelovic, A., & Ruiz, P. (2014). Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst. Applied Catalysis B, 113-114, 2-10. DOI: 10.1016/j.apcatb.2011.02.033.10.1016/j.apcatb.2011.02.033Search in Google Scholar

Borgschulte, A., Galladant, N., Probst, B., Suter, R., Callini, E., Ferri, D., Arroyo, Y., Erni, R., Geerlings, H., & Züttel, A. (2013). Sorption enhanced CO2 methanation. Physical Chemistry Chemical Physics, 15, 9620–9625. DOI: 10.1039/c3cp51408k.10.1039/c3cp51408kSearch in Google Scholar PubMed

Brooks, K. P., Hu, J. L., Zhu, H. Y., & Kee, R. J. (2007). Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chemical Engineering Science, 62, 1161–1170. DOI: 10.1016/j.ces.2006.11. 020.10.1016/j.ces.2006.11.020Search in Google Scholar

Canadell, J. G., Le Quere, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R. A., & Marland, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity and efficiency of natural sinks. Proceedings of the National Academy of Sciences, 104, 18866–18870. DOI: 10.1073/pnas.0702737104.10.1073/pnas.0702737104Search in Google Scholar PubMed PubMed Central

Centi, G., & Perathoner, S. (2009). Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today, 148, 191–205. DOI: 10.1016/j.cattod.2009.07.075.10.1016/j.cattod.2009.07.075Search in Google Scholar

Chang, F. W., Hsiao, T. J., Chung, S. W., & Lo, J. J. (1997). Nickel supported on rice husk ash activity and selectivity in CO2 methanation. Applied Catalysis A, 164, 225–236. DOI: 10.1016/s0926-860x(97)00173-7.10.1016/s0926-860x(97)00173-7Search in Google Scholar

Coenen, J. W. E., van Nisselrooy, P. F. M. T., de Croon, M. H. J. M., van Dooren, P. F. H. A., & van Meerten, R. Z. C. (1986). The dynamics of methanation of carbon monoxide on nickel catalysts. Applied Catalysis, 25, 1–8. DOI: 10.1016/s01669834(00)81215-4.10.1016/s01669834(00)81215-4Search in Google Scholar

Darensbourg, D. J., Holtcamp, M. W., Struck, G. E., Zimmer, M. S., Niezgoda, S. A., Rainey, P., Robertson, J. B., Draper, J. D., & Reibenspies, J. H. (1999). Catalytic activity of a series of Zn(II) phenoxides for the copolymerization of epoxides and carbon dioxide. Journal of the American Chemical Society, 121, 107–116. DOI: 10.1021/ja9826284.10.1021/ja9826284Search in Google Scholar

Ding, X., de Rogatis, L., Vesselli, E., Baraldi, A., Comelli, G., Rosei, R., Savio, L., Vattuone, L., Rocca, M., Fornasiero, P., Ancilotto, F., Balderschi, A., & Peressi, M. (2007). Interaction of carbon dioxide with Ni(110): A combined experimental and theoretical study. Physical Review B, 76, 195425. DOI: 10.1103/physrevb.76.195425.10.1103/physrevb.76.195425Search in Google Scholar

Eckle, S., Anfang, H. G., & Behm, R. J. (2011). Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases. The Journal of Physical Chemistry C, 115, 1361–1367. DOI: 10.1021/jp108106t.10.1021/jp108106tSearch in Google Scholar

Edwards, J. H. (1995). Potential sources of CO2 and the options for its large-scale utilisation now and in the future. Catalysis Today, 23, 59–66. DOI: 10.1016/0920-5861(94)00081-c.10.1016/0920-5861(94)00081-cSearch in Google Scholar

Falconer, J. L., & Zagli, A. E. (1980). Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. Journal of Catlaysis, 62, 280–285. DOI: 10.1016/0021-9517(80)90456-x.10.1016/0021-9517(80)90456-xSearch in Google Scholar

Gao, J. J., Wang, Y. L., Ping, Y., Hu, D. C., Xu, G. W., Gu, F. N., & Su, F. B. (2012). A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, 2, 2358–2368. DOI: 10.1039/c2ra00632d.10.1039/c2ra00632dSearch in Google Scholar

Goguet, A., Burch, R., Chen, Y., Hardacre, C., Hu, P., Joyner, R. W., Meunier, F. C., Mun, B. S., Thompsett, A., & Tibiletti, D. (2007). Deactivation mechanism of a Au/CeZrO4 catalyst during a low-temperature water gas shift reaction. The Journal of Physical Chemistry C, 111, 16927–16933. DOI: 10.1021/jp0743976.10.1021/jp0743976Search in Google Scholar

Graça, I., González, L. V., Bacariza, M. C., Fernandes, A., Henriques, C., Lopes, J. M., & Ribeiro, M. F. (2014). CO2 hydrogenation into CH4 on NiHNaUSY zeolites. Applied Catalysis B, 147, 101–110. DOI: 10.1016/j.apcatb.2013.08.010.10.1016/j.apcatb.2013.08.010Search in Google Scholar

Gustavsson, L., Böorjesson, P., Johansson, B., & Svenningsson, P. (1995). Reducing CO2 emissions by substituting biomass for fossil fuels. Energy, 20, 1097–1113. DOI: DOI: 10.1016/0360-5442(95)00065-o.DOI: 10.1016/0360-5442(95)00065-oSearch in Google Scholar

Henderson, M. A., & Worley, S. D. (1985). An infrared study of the hydrogenation of carbon dioxide on supported rhodium catalysts. The Journal of Physical Chemistry, 89, 1417–1423. DOI: 10.1021/j100254a023.10.1021/j100254a023Search in Google Scholar

Herzog, H. J. (2011). Scaling up carbon dioxide capture and storage: From megatons to gigatons. Energy Economics, 33, 597–604. DOI: 10.1016/j.eneco.2010.11.004.10.1016/j.eneco.2010.11.004Search in Google Scholar

Hoekman, S. K., Broch, A., Robbins, C., & Purcell, R. (2010). CO2 recycling by reaction with renewably-generated hydrogen. Interantionla Journal of Greenhouse Gas Control, 4, 44–50. DOI: 10.1016/j.ijggc.2009.09.012.10.1016/j.ijggc.2009.09.012Search in Google Scholar

Holladay, J. D., Brooks, K. P., Wegen, R., Hu, J. L., Sanders, J., & Baird, S. (2007). Microreactor development for Martian in situ propellant production. Catalysis Today, 120, 35–44. DOI: 10.1016/j.cattod.2006.07.019.10.1016/j.cattod.2006.07.019Search in Google Scholar

Hu, J. L., Brooks, K. P., Holladay, J. D., Howe, D. T., & Simon, T. M. (2007). Catalyst development for microchannel reactors for martian in situ propellant production. Catalysis Today, 125, 103–110. DOI: 10.1016/j.cattod.2007.01.067.10.1016/j.cattod.2007.01.067Search in Google Scholar

International Energy Agency (2014). World energy outlook 2014. Executive summary. Retrieved March 2, 2015, from http://www.iea.org/Textbase/npsum/WEO2014SUM.pdfSearch in Google Scholar

Jacquemin, M., Beuls, A., & Ruiz, P. (2010). Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism. Catalysis Today, 157, 462–466. DOI: 10.1016/j.cattod.2010.06.016.10.1016/j.cattod.2010.06.016Search in Google Scholar

Jürgensen, L., Ehimen, E. A., Born, J., & Holm-Nielsen, J. B. (2015). Dynamic biogas upgrading based on the Sabatier process: Thermodynamic and dynamic process simulation. Bioresource Technology, 178, 323–329. DOI: 10.1016/j.biortech.2014.10.069.10.1016/j.biortech.2014.10.069Search in Google Scholar PubMed

Karelovic, A., & Ruiz, P. (2012). CO2 hydrogenation at low temperature over Rh/γ-Al2O3 catalysts: Effect of the metal particle size on catalytic performances and reaction mechanism. Applied Catalysis B, 113–114, 237–249. DOI: 10.1016/j.apcatb.2011.11.043.10.1016/j.apcatb.2011.11.043Search in Google Scholar

Karn, F. S., Shultz, J. F., & Anderson, R. B. (1965). Hydrogenation of carbon monoxide and carbon dioxide on supported ruthenium catalysts at moderate pressures. Industrial & Engineering Chemistry Product Research and Development, 4, 265–269. DOI: 10.1021/i360016a014.10.1021/i360016a014Search in Google Scholar

Kim, H. Y., Lee, H. M., & Park, J. N. (2010). Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst: Indipendent roles of MgO and Pd on CO2 methanation. The Journal of Physical Chemistry C, 114, 7128–7131. DOI: 10.1021/jp100938v.10.1021/jp100938vSearch in Google Scholar

Klissurski, D., Uzunova, E., & Ivanov, K. (1992). Binary spinel cobaltites of nickel, copper and zinc as precursors of catalysts for carbon oxides methanation. Catalysis Letters, 15, 385–391. DOI: 10.1007/bf00769162.10.1007/bf00769162Search in Google Scholar

Klose, J., & Baerns, M. (1984). Kinetics of the methanation of carbon monoxide on an alumina-supported nickel catalyst. Journal of Catalysis, 85, 105–116. DOI: 10.1016/00219517(84)90114-3.10.1016/00219517(84)90114-3Search in Google Scholar

Koçl, K., Obalová, L., & Lacný, Z. (2008). Photocatalytic reduction of CO2 over TiO2 based catalysts. Chemical Papers, 62, 1–9. DOI: 10.2478/s11696-007-0072-x.10.2478/s11696-007-0072-xSearch in Google Scholar

Lapidus, A. L., Gaiadai, N. A., Nekrasov, N. V., Tishkova, L. A., Agafonov, Y. A., & Myshenkova, T. N. (2007). The mechanism of carbon dioxide hydrogenation on copper and nickel catalysts. Petroleum Chemistry, 47, 75–82. DOI: 10.1134/s0965544107020028.10.1134/s0965544107020028Search in Google Scholar

Marwood, M., Doepper, R., & Renken, A. (1997). In-situ surface and gas phase analysis for kinetic studies under transient conditions. The catalytic hydrogenation of CO2. Applied Catalysis A, 151, 223–246. DOI: 10.1016/s0926-860x(96)00267-0.10.1016/s0926-860x(96)00267-0Search in Google Scholar

Mills, G. A., & Steffgen, F. W. (1974). Catalytic methanation. Catalysis Reviews, 8, 159–210. DOI: 10.1080/0161494740807 1860.10.1080/0161494740807 1860Search in Google Scholar

Pan, Q. S., Peng, J. X., Wang, S., & Wang, S. D. (2014a). In situ FTIR spectroscopic study of the CO2 methanation mechanism on Ni/Ce0.5Zr0.5O2. Catalysis Science & Technology, 4, 502–509. DOI: 10.1039/c3cy00868a.10.1039/c3cy00868aSearch in Google Scholar

Pan, Q. S., Peng, J. X., Sun, T. K., Gao, D. N., Wang, S., & Wang, S. D. (2014b). CO2 methanation on Ni/Ce0.5Zr0.5O2 catalysts for the production of synthetic natural gas. Fuel Processing Technology, 123, 166–171. DOI: 10.1016/j.fuproc. 2014.01.004.10.1016/j.fuproc.2014.01.004Search in Google Scholar

Pan, Q. S., Peng, J. X., Sun, T. J., Wang, S., & Wang, S. D. (2014c). Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites. Catalysis Communications, 45, 74–78. DOI: 10.1016/j.catcom.2013.10.034.10.1016/j.catcom.2013.10.034Search in Google Scholar

Peebles, D. E., Goodman, D. W., & White, J. M. (1983). Methanation of carbon dioxide on nickel(100) and the effects of surface modifiers. The Journal of Physical Chemistry, 87, 4378–4387. DOI: 10.1021/j100245a014.10.1021/j100245a014Search in Google Scholar

Sabatier, P., & Senderens, J. B. (1902). Nouvelles synthèses du methane. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 134, 514–516. (in French)Search in Google Scholar

Sato, S., Arai, T., Morikawa, T., Uemura, K., Suzuki, T. M., Tanaka, H., & Kajino, T. (2011). Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. Journal of the American Chemical Society, 133, 15240–15243. DOI: 10.1021/ja204881d.10.1021/ja204881dSearch in Google Scholar

Schild, C., Wokaun, A., Koeppel, R. A., & Baiker, A. (1991). Carbon dioxide hydrogenation over nickel/zirconia catalysts from amorphous precursors: On the mechanism of methane formation. The Journal of Physical Chemistry, 95, 6341–6346. DOI: 10.1021/j100169a049.10.1021/j100169a049Search in Google Scholar

Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F. X., Elobeid, A., Fabiosa, J., Tokgoz, S., Hayes, D., & Yu, T. H. (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319, 1238–1240. DOI: 10.1126/science.1151861.10.1126/science.1151861Search in Google Scholar

Sharma, S., Hu, Z. P., Zhang, P., McFarland, E. W., & Metiu, H. (2011). CO2 methanation on Ru-doped ceria. Journal of Catalysis, 278, 297–309. DOI: 10.1016/j.jcat.2010.12.015.10.1016/j.jcat.2010.12.015Search in Google Scholar

Solymosi, F., Erdöhelyi, A., & Kocsis, M. (1981a). Methanation of CO2 on supported Ru catalysts. Journal of the Chemical Society, Faraday Transactions 1, 77, 1003–1012. DOI: 10.1039/f19817701003.10.1039/f19817701003Search in Google Scholar

Solymosi, F., Erdöhelyi, A., & Bánsági, T. (1981b). Methanation of CO2 on supported rhodium catalyst. Journal of Catalysis, 68, 371–382. DOI: 10.1016/0021-9517(81)90106-8.10.1016/0021-9517(81)90106-8Search in Google Scholar

Song, C. S. (2006). Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 115, 2–32. DOI: 10.1016/j.cattod.2006.02.029.10.1016/j.cattod.2006.02.029Search in Google Scholar

Tada, S., Shimizu, T., Kameyama, H., Haneda, T., & Kikuchi, R. (2012). Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. International Journal of Hydrogen Energy, 37, 5527–5531. DOI: 10.1016/j.ijhydene.2011.12.122.10.1016/j.ijhydene.2011.12.122Search in Google Scholar

Tada, S., Ochieng, O. J., Kikuchi, R., Haneda, T., & Kameyama, H. (2014). Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts. International Journal of Hydrogen Energy, 39, 10090–10100. DOI: 10.1016/j.ijhydene.2014.04.133.10.1016/j.ijhydene.2014.04.133Search in Google Scholar

Takanabe, K., Nagaoka, K., Nariai, K., & Aika, K. (2005). Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane. Journal of Catalysis, 232, 268–275. DOI: 10.1016/j.jcat.2005.03.011.10.1016/j.jcat.2005.03.011Search in Google Scholar

Tilley, J. (1993). IEA carbon dioxide disposal symposium Oxford, United Kingdom 29th–31st March 1993 IEA perspectives on global climate change issues. Energy Conversion and Managment, 34, 711–718. DOI: 10.1016/01968904(93)90012-y.10.1016/01968904(93)90012-ySearch in Google Scholar

Trovarelli, A., Deleitenburg, C., Dolcetti, G., & Lorca, J. L. (1995). CO2 Methanation under transient and steady-state conditions over Rh/CeO2 and CeO2-promoted Rh/SiO2: The role of surface and bulk ceria. Journal of Catalysis, 151, 111–124. DOI: 10.1006/jcat. 1995.1014.10.1006/jcat.1995.1014Search in Google Scholar

Tsuji, M., Kato, H., Kodama, T., Chang, S. G., Hesegawa, N., & Tamaura, Y. (1994). Methanation of CO2 on H2-reduced Ni(II)-or Co(II)-bearing ferrites at 200 °C. Journal of Materials Science, 29, 6227–6230. DOI: 10.1007/bf00354564.10.1007/bf00354564Search in Google Scholar

Tsuji, M., Kodama, T., Yochida, T., Kitayama, Y., & Tamaura, Y. (1996). Preparation and CO2 methanation activity of an ultrafine Ni(II) ferrite catalyst. Journal of Catalysis, 164, 315–321. DOI: 10.1006/jcat.1996.0387.10.1006/jcat.1996.0387Search in Google Scholar

U.S. Energy Information Administration (2015). International energy statistics. Retrieved March 2, 2015, from http://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=90&pid=44&aid=8&cid=ww,&syid=1980&eyid=2012&unit=MMTCDSearch in Google Scholar

Ussa Aldana, P. A., Ocampo, F., Kobl, K., Louis, B., Thibault-Starzyk, F., Daturi, M., Bazin, P., Thomas, S., & Roger, A. C. (2013). Catalytic CO2 valorization into CH4 on Nibased ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catalysis Today, 215, 201–207. DOI: 10.1016/j. cattod.2013.02.019.10.1016/j.cattod.2013.02.019Search in Google Scholar

Vesselli, E., De Rogatis, L., Ding, X. L., Baraldi, A., Savio, L., Vattuone, L., Rocca, M., Fornasiero, P., Peressi, M., Baldereschi, A., Rosei, R., & Comelli, G. (2008). Carbon dioxide hydrogenation on Ni(110). Journal of the American Chemical Society, 130, 11417–11422. DOI: 10.1021/ja8025 54g.10.1021/ja8025 54gSearch in Google Scholar

Wang, S. B., Lu, G. Q. M., & Millar, G. J. (1996). Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art. Energy & Fuels, 10, 896–904. DOI: 10.1021/ef950227t.10.1021/ef950227tSearch in Google Scholar

Watile, R. A., Bhanage, B. M., Fujita, S. I., & Arai, M. (2014). Indirect utilization of carbon dioxide in organic synthesis for valuable chemicals. In B. M. Bhanage, & M. Arai (Eds.), Transformation and utilization of carbon dioxide (pp. 55–71). Berlin, Germany: Springer. DOI: 10.1007/978-3-64244988-8.3.10.1007/978-3-64244988-8.3Search in Google Scholar

Weatherbee, G. D., & Bartholomew, C. H. (1982). Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis, 77, 460–472. DOI: 10.1016/0021-9517(82)90186-5.10.1016/0021-9517(82)90186-5Search in Google Scholar

Wentrcek, P. R., Wood, B. J., & Wise, H. (1976). The role of surface carbon in catalytic methanation. Journal of Catalysis, 43, 363–366. DOI: 10.1016/0021-9517(76)90324-9.10.1016/0021-9517(76)90324-9Search in Google Scholar

Westermann, A., Azambre, B., Bacariza, M. C., Graçca, I., Ribeiro, M. F., Lopes, J. M., & Henriques, C. (2015). Insight into CO2 methanation mechanism over NiUSY zeolites: An operando IR study. Applied Catalysis B, 174–175, 120–125. DOI: 10.1016/j.apcatb.2015.02.026.10.1016/j.apcatb.2015.02.026Search in Google Scholar

World News (2013). Clariant supplies SNG catalyst for first commercial COg methanation plant “Power-to-Gas”. Retrieved July 8, 2015, from http://article.wn.com/view/2013/10/2l/Clariant_Supplies_SNG_Catalyst_for_First_ Commercial_CO2_Meth/#/relatecLnews10.1016/S1351-4180(13)70441-0Search in Google Scholar

Yaccato, K., Carhart, R., Hagemeyer, A., Lesik, A., Strasser, P., Volpe, A. F., Turner, H., Weinberg, H., Grasselli, R. K., & Brooks, C. (2005). Competitive CO and CO2 methanation over supported noble metal catalysts in high throughput scanning mass spectrometer. Applied Catalysis A, 296, 30–48. DOI: 10.1016/j.apcata.2005.07.052.10.1016/j.apcata.2005.07.052Search in Google Scholar

Yang, H. Q., Xu, Z. H., Fan, M. H., Gupta, R., Slimane, R. B., Bland, A. E., & Wright, I. (2008). Progress in carbon dioxide separation and capture: A review. Journal of Environmental Sciences, 20, 14–27. DOI: 10.1016/s1001-0742(08)60002-9.10.1016/s1001-0742(08)60002-9Search in Google Scholar

Yu, K. M. K., Curcic, I., Gabriel, J., & Tsang, S. C. E. (2008). Recent advances in CO2 capture and utilization. ChemSusChem, 1, 893–899. DOI: 10.1002/cssc.200800169.10.1002/cssc.200800169Search in Google Scholar PubMed

Zamani, A. H., Ali, R., & Bakar, W. A. W. A. (2014). The investigation of Ru/Mn/Cu-Al2O3 oxide catalysts for CO2/H2 methanation in natural gas. Journal of the Taiwan Institute of Chemical Engineers, 45, 143–152. DOI: 10.1016/j.jtice.2013.04.009.10.1016/j.jtice.2013.04.009Search in Google Scholar

Received: 2015-4-7
Revised: 2015-7-20
Accepted: 2015-9-7
Published Online: 2016-1-22
Published in Print: 2016-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Prevention of degradation of γ-irradiated EPDM using phenolic antioxidants
  3. Original Paper
  4. Differentiation of black, green, herbal and fruit bagged teas based on multi-element analysis using inductively-coupled plasma atomic emission spectrometry
  5. Original Paper
  6. Reaction mechanisms of carbon dioxide methanation
  7. Review
  8. Power consumption and gas–liquid dispersion in turbulently agitated vessels with vertical dual-array tubular coil baffles
  9. Short Communication
  10. Tannins analysis from different medicinal plants extracts using MALDI-TOF and MEKC
  11. Original Paper
  12. Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions
  13. Original Paper
  14. Synthesis of Fe3O4–Ag nanocomposites and their application to enzymeless hydrogen peroxide detection
  15. Original Paper
  16. Possibilities for removal of chlorinated dye Mordant Blue 9 from model waste water
  17. Review
  18. Preparation and properties of gelatin films incorporated with N-hydroxysuccinimide-activated end-bit binary acid
  19. Original Paper
  20. Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2,4,5-triaryl-1 H-imidazoles
  21. Short Communication
  22. Prediction of power consumption in mechanically agitated gassed reactor in viscous batch
  23. Original Paper
  24. Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water
  25. Original Paper
  26. Continuous synthesis of N-ethylethylenediamine over supported Cu–Zn–La catalysts
  27. Preface
  28. Enzyme-assisted extraction of citrus essential oil
  29. Preface
  30. Experimental investigations of liquid flow in pipe with flat internal baffles
Downloaded on 28.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0216/html
Scroll to top button