Abstract
To achieve highly sensitive nonenzymatic detection of H2O2, a novel electrochemical sensor based on Fe3O4–Ag nanocomposites was developed. Nanocomposites were synthesized by reducing [Ag(NH3)2]+ at the gas/liquid interface in the presence of silver seeds and confirmed by transmission electron microscopy and X-ray diffractometry. Electrochemical investigations indicate that the sensor is able to detect H2O2 within a wide linear range of 0.5 μM to 4.0 mM, sensitivity of 135.4 μA mM−1 cm−2 and low detection limit of 0.2 μM (S/N = 3). Additionally, the sensor exhibits good anti–interference ability, stability and repeatability. These results show that the Fe3O4–Ag nanocomposite is a promising electrocatalytic material for sensors construction.
Acknowledgements.
The authors gratefully acknowledge financial support of this project by the National Science Foundation of China (21575113, 21275116 and 21105080), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20126101120023), the Natural Science Foundation of the Shaanxi Province in China (2013JM2006, 2013KJXX-25 and 2012JM2013), the Scientific Research Foundation of the Shaanxi Provincial Key Laboratory (2010JS088, 11JS080, 12JS087, 13JS097, 13JS098) and the Fund of the Shaanxi Province Educational Committee of China (12JK0576).
References
Aliakbarinodehi, N., Taurino, I., Pravin, J., Tagliaferro, A., Piccinini, G., De Micheli, G., & Carrara, S. (2015). Electro-chemical nanostructured biosensors: Carbon nanotubes versus conductive and semi-conductive nanoparticles. Chemical Papers, 69, 134–142. DOI: 10.1515/chempap-2015-0004.10.1515/chempap-2015-0004Search in Google Scholar
Bai, W. S., Zheng, J. B., & Sheng, Q. L. (2013). A nonenzymatic hydrogen peroxide sensor based on Ag/MnOOH nanocomposites. Electroanalysis, 25, 2305–2311. DOI: 10.1002/elan.201300236.10.1002/elan.201300236Search in Google Scholar
Campbell, F. W., Belding, S. R., Baron, R., Xiao, L., & Compton, R. G. (2009). Hydrogen peroxide electroreduction at a silver-nanoparticle array: Investigating nanoparticle size and coverage effects. The Journal of Physical Chemistry C, 113, 9053–9062. DOI: 10.1021/jp900233z.10.1021/jp900233zSearch in Google Scholar
Chen, H. H., Zhang, Z., Cai, D. Q., Zhang, S. Y., Zhang, B. L., Tang, J. L., & Wu, Z. Y. (2011). A hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on natural nano-structure attapulgite modified glassy carbon electrode. Talanta, 86, 266–270. DOI: 10.1016/j.talanta.2011.09.011.10.1016/j.talanta.2011.09.011Search in Google Scholar PubMed
Cui, K., Song, Y. H., Yao, Y., Huang, Z. Z., & Wang, L. (2008). A novel hydrogen peroxide sensor based on Ag nanoparticles electrodeposited on DNA-networks modified glassy carbon electrode. Electrochemistry Communications, 10, 663–667. DOI: 10.1016/j.elecom.2008.02.016.10.1016/j.elecom.2008.02.016Search in Google Scholar
Halouzka, V., Jakubec, P., Gregor, C., Jancik, D., Papadopoulos, K., Triantis, T., & Hrbac, J. (2010). Silver-Nafion coated cylindrical carbon fiber microelectrode for amperometric monitoring of hydrogen peroxide heterogeneous catalytic decomposition. Chemical Engineering Journal, 165, 813–818. DOI: 10.1016/j.cej.2010.10.023.10.1016/j.cej.2010.10.023Search in Google Scholar
Han, Y., Zheng, J. B., & Dong, S. Y. (2013). A novel nonenzymatic hydrogen peroxide sensor based on Ag–MnO2–MWCNTs nanocomposites. Electrochimica Acta, 90, 35–43. DOI: 10.1016/j.electacta.2012.11.117.10.1016/j.electacta.2012.11.117Search in Google Scholar
Han, Q., Ni, P. J., Liu, Z. R., Dong, X. T., Wang, Y., Li, Z., & Liu, Z. L. (2014). Enhanced hydrogen peroxide sensing by incorporating manganese dioxide nanowire with silver nanoparticles. Electrochemistry Communications, 38, 110–113. DOI: 10.1016/j.elecom.2013.11.012.10.1016/j.elecom.2013.11.012Search in Google Scholar
Jiang, G. D., Tang, H. Q., Zhu, L. H., Zhang, J. D., & Lu, B. (2009). Improving electrochemical properties of liquid phase deposited TiO2 thin films by doping sodium dodecylsulfonate and its application as bioelectrocatalytic sensor for hydrogen peroxide. Sensors and Actuators B, 138, 607–612. DOI: 10.1016/j.snb.2009.03.019.10.1016/j.snb.2009.03.019Search in Google Scholar
Ju, J., & Chen, W. (2015). In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Analytical Chemistry, 87, 1903–1910. DOI: 10.1021/ac5041555.10.1021/ac5041555Search in Google Scholar PubMed
Klassen, N. V., Marchington, D., & McGowan, H. C. E. (1994). H2O2 determination by the I3-method and by KMnO4 titration. Analytical Chemistry, 66, 2921–2925. DOI: 10.1021/ac00090a020.10.1021/ac00090a020Search in Google Scholar
Li, L. M., Du, Z. F., Liu, S. A., Hao, Q. Y., Wang, Y. G., Li, Q. H., & Wang, T. H. (2010). A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta, 82, 1637–1641. DOI: 10.1016/j.talanta.2010.07.020.10.1016/j.talanta.2010.07.020Search in Google Scholar PubMed
Li, Y. B., Chen, G., Li, Q. H., Qiu, G. Z., &Liu, X. H. (2011). Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite. Journal of Alloys and Compounds, 509, 4104–4107. DOI: 10.1016/j.jallcom.2010.12.100.10.1016/j.jallcom.2010.12.100Search in Google Scholar
Lian, W. P., Wang, L., Song, Y. H., Yuan, H. Z., Zhao, S. C., Li, P., & Chen, L. L. (2009). A hydrogen peroxide sensor based on electrochemically roughened silver electrodes. Electrochimica Acta, 54, 4334–4339. DOI: 10.1016/j.electacta.2009.02.106.10.1016/j.electacta.2009.02.106Search in Google Scholar
Lin, C. Y., Lai, Y. H., Balamurugan, A., Vittal, R., Lin, C. W., & Ho, K. C. (2010). Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide. Talanta, 82, 340–347. DOI: 10.1016/j.talanta.2010.04.047.10.1016/j.talanta.2010.04.047Search in Google Scholar PubMed
Liu, J., Sun, Z. K., Deng, Y. H., Zou, Y., Li, C. Y., Guo, X. H., Xiong, L. Q., Gao, Y., Li, F. Y., & Zhao, D. Y. (2009). Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angewandte Chemie, 121, 5989–5993. DOI: 10.1002/ange.200901566.10.1002/ange.200901566Search in Google Scholar
Liu, Z. L., Zhao, B., Shi, Y., Guo, C. L., Yang, H. B., & Li, Z. A. (2010). Novel nonenzymatic hydrogen peroxide sensor based on iron oxide–silver hybrid submicrospheres. Talanta, 81, 1650–1654. DOI: 10.1016/j.talanta.2010.03.019.10.1016/j.talanta.2010.03.019Search in Google Scholar PubMed
Lou, Z. R., Li, P., Sun, X. F., Yang, S.Q., Wang, B.S., & Han, K. L. (2013). A fluorescent probe for rapid detection of thiols and imaging of thiols reducing repair and H2O2 oxidative stress cycles in living cells. Chemical Communications, 49, 391–393. DOI: 10.1039/c2cc36839k.10.1039/c2cc36839kSearch in Google Scholar PubMed
Lu, W. B., Liao, F., Luo, Y. L., Chang, G. H., & Sun, X. P. (2011a). Hydrothermal synthesis of well-stable silver 411 nanoparticles and their application for enzymeless hydrogen peroxide detection. Electrochimica Acta, 56, 2295–2298. DOI: 10.1016/j.electacta.2010.11.053.10.1016/j.electacta.2010.11.053Search in Google Scholar
Lu, W. B., Luo, Y. L., Chang, G. H., & Sun, X. P. (2011b). Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection. Biosensors and Bioelectronics, 26, 4791–4797. DOI: 10.1016/j.bios.2011.06.008.10.1016/j.bios.2011.06.008Search in Google Scholar PubMed
Pinkernell, U., Effkemann, S., & Karst, U. (1997). Simultaneous HPLC determination of peroxyacetic acid and hydrogen peroxide. Analytical Chemistry, 69, 3623–3627. DOI: 10.1021/ac9701750.10.1021/ac9701750Search in Google Scholar PubMed
Safavi, A., Maleki, N., & Farjami, E. (2009). Electrodeposited silver nanoparticles on carbon ionic liquid electrode for electrocatalytic sensing of hydrogen peroxide. Electroanalysis, 21, 1533–1538. DOI: 10.1002/elan.200804577.10.1002/elan.200804577Search in Google Scholar
Schultz, A. G., Ong, K. J., MacCormack, T., Ma, G. B., Veinot, J. G. C., & Goss, G. G. (2012). Silver nanoparticles inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss). Environmental Science & Technology, 46, 10295–10301. DOI: 10.1021/es3017717.10.1021/es3017717Search in Google Scholar PubMed
Sheng, Q. L., Liu, R. X., & Zheng, J. B. (2012). Prussian blue nanospheres synthesized in deep eutectic solvents. Nanoscale, 4, 6880–6886. DOI: 10.1039/c2nr31830j.10.1039/c2nr31830jSearch in Google Scholar PubMed
Wang, L., & Wang, E. K. (2004). A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochemistry Communications, 6, 225–229. DOI: 10.1016/j.elecom.2003.12.004.10.1016/j.elecom.2003.12.004Search in Google Scholar
Wang, L. S., Deng, J. C., Yang, F., & Chen, T. (2008). Preparation and catalytic properties of Ag/CuO nano–composites via a new method. Materials Chemistry and Physics, 108, 165–169. DOI: 10.1016/j.matchemphys.2007.09.029.10.1016/j.matchemphys.2007.09.029Search in Google Scholar
Welch, C. M., Banks, C. E., Simm, A. O., & Compton, R. G. (2005). Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Analytical and Bioanalytical Chemistry, 382, 12–21. DOI: 10.1007/s00216-005-3205-5.10.1007/s00216-005-3205-5Search in Google Scholar PubMed
Yao, L., Yang, W. Y., Yang, J., He, L. H., Sun, J., Song, R., Ma, Z., & Huang, W. (2011). Preparation and catalytic ability to reduce hydrogen peroxide of Ag nanoparticles highly dispersed via hyperbranched copolymer. Nanoscale, 3, 916–918. DOI: 10.1039/c0nr00567c.10.1039/c0nr00567cSearch in Google Scholar PubMed
Yin, G., Xing, L., Ma, X. J., & Wan, J. (2014). Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles. Chemical Papers, 68, 435–441. DOI: 10.2478/s11696-013-0473-y.10.2478/s11696-013-0473-ySearch in Google Scholar
Zhao, H. Y., Zheng, W., Meng, Z. X., Zhou, H. M., Xu, X. X., Li, Z., & Zheng, Y. F. (2009a). Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film. Biosensors and Bioelectronics, 24, 2352–2357. DOI: 10.1016/j.bios.2008.12.004.10.1016/j.bios.2008.12.004Search in Google Scholar PubMed
Zhao, W., Wang, H. C., Qin, X., Wang, X. S., Zhao, Z. X., Miao, Z. Y., Chen, L. L., Shan, M. M., Fang, Y. X., & Chen, Q. (2009b). A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta, 80 1029–1033. DOI: 10.1016/j.talanta.2009.07.055.10.1016/j.talanta.2009.07.055Search in Google Scholar PubMed
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Original Paper
- Prevention of degradation of γ-irradiated EPDM using phenolic antioxidants
- Original Paper
- Differentiation of black, green, herbal and fruit bagged teas based on multi-element analysis using inductively-coupled plasma atomic emission spectrometry
- Original Paper
- Reaction mechanisms of carbon dioxide methanation
- Review
- Power consumption and gas–liquid dispersion in turbulently agitated vessels with vertical dual-array tubular coil baffles
- Short Communication
- Tannins analysis from different medicinal plants extracts using MALDI-TOF and MEKC
- Original Paper
- Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions‡
- Original Paper
- Synthesis of Fe3O4–Ag nanocomposites and their application to enzymeless hydrogen peroxide detection
- Original Paper
- Possibilities for removal of chlorinated dye Mordant Blue 9 from model waste water‡
- Review
- Preparation and properties of gelatin films incorporated with N-hydroxysuccinimide-activated end-bit binary acid
- Original Paper
- Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2,4,5-triaryl-1 H-imidazoles
- Short Communication
- Prediction of power consumption in mechanically agitated gassed reactor in viscous batch‡
- Original Paper
- Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water
- Original Paper
- Continuous synthesis of N-ethylethylenediamine over supported Cu–Zn–La catalysts
- Preface
- Enzyme-assisted extraction of citrus essential oil
- Preface
- Experimental investigations of liquid flow in pipe with flat internal baffles
Articles in the same Issue
- Original Paper
- Prevention of degradation of γ-irradiated EPDM using phenolic antioxidants
- Original Paper
- Differentiation of black, green, herbal and fruit bagged teas based on multi-element analysis using inductively-coupled plasma atomic emission spectrometry
- Original Paper
- Reaction mechanisms of carbon dioxide methanation
- Review
- Power consumption and gas–liquid dispersion in turbulently agitated vessels with vertical dual-array tubular coil baffles
- Short Communication
- Tannins analysis from different medicinal plants extracts using MALDI-TOF and MEKC
- Original Paper
- Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions‡
- Original Paper
- Synthesis of Fe3O4–Ag nanocomposites and their application to enzymeless hydrogen peroxide detection
- Original Paper
- Possibilities for removal of chlorinated dye Mordant Blue 9 from model waste water‡
- Review
- Preparation and properties of gelatin films incorporated with N-hydroxysuccinimide-activated end-bit binary acid
- Original Paper
- Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2,4,5-triaryl-1 H-imidazoles
- Short Communication
- Prediction of power consumption in mechanically agitated gassed reactor in viscous batch‡
- Original Paper
- Hydrogel supported chiral imidazolidinone for organocatalytic enantioselective reduction of olefins in water
- Original Paper
- Continuous synthesis of N-ethylethylenediamine over supported Cu–Zn–La catalysts
- Preface
- Enzyme-assisted extraction of citrus essential oil
- Preface
- Experimental investigations of liquid flow in pipe with flat internal baffles