Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
Abstract
A simple, efficient procedure for the preparation of phospho sulfonic acid PO(OSO3H)3 as a Brønsted acidic and recoverable heterogeneous catalyst is described, used for the one-pot synthesis of aryl-14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes. A cost-effective, simple and convenient procedure for the synthesis of aryl-14H-dibenzo[a,j]xanthenes was developed via a onepot condensation from substituted benzaldehydes and β-naphthol under solvent-free conditions. The one-pot condensation of substituted benzaldehydes and 5,5-dimethyl-1,3-cyclohexanedione (dimedone) under solvent-free conditions leads to 1,8-dioxo-octahydro-xanthenes. These protocols afford a number of advantages, such as: excellent yields, very short reaction times, easy procedure, simple methodology and ease of preparation and regeneration of the catalyst.
References
Ahmad, M., King, T. A., Ko, D. K., Cha, B. H., & Lee, J. M. (2002). Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. Journal of Physics D: Applied Physics, 35, 1473-1476. DOI: 10.1088/0022-3727/35/13/303.Search in Google Scholar
Bigdeli, M. A., Heravi, M. M., & Mahdavinia, G. H. (2007). Silica supported perchloric acid (HClO4-SiO2): A mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl or alkyl-14H-dibenzo[a,j ]xanthenes. Journal of Molecular Catalalysis A: Chemical, 275, 25-29. DOI: 10.1016/j.molcata.2007.05.007.Search in Google Scholar
Carrigan, M. D., Eash, K. J., Oswald, M. C., & Mohan, R. S. (2001). An efficient method for the chemoselective synthesis of from aromatic aldehydes using bismuth trifiate. Tetrahedron Letters, 42, 8133-8135. DOI: 10.1016/s0040-4039(01)01756-7.Search in Google Scholar
Dabiri, M., Azimi, S. C., & Bazgir, A. (2008). One-pot synthesis of xanthene derivatives under solvent-free conditions. Chemical Papers, 62, 522-526. DOI: 10.2478/s11696-008-0050-y.Search in Google Scholar
Das, B., Ravikanth, B., Ramu, R., Laxminarayana, K., & Rao, B. V. (2006). Iodine catalyzed simple and efficient synthesis of 14-aryl or alkyl-14H-dibenzo[a,j ]xanthenes. Journal of Molecular Catalalysis A: Chemical, 255, 74-77. DOI: 10.1016/j.molcata.2006.04.007.Search in Google Scholar
Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic liquid (molten salt) phase organometallic catalysis. Chemical Reviews, 102, 3667-3692. DOI: 10.1021/cr010338r.Search in Google Scholar
Hajipour, A. R., Khazdooz, L., & Ruoho, A. E. (2008). Brønsted acidic ionic liquid as an efficient catalyst for chemoselective synthesis of 1,1-diacetates under solventfree conditions. Catalysis Communications, 9, 89-96. DOI: 10.1016/j.catcom.2007.05.003.Search in Google Scholar
Hajinasiri, R., & Rezayati, S. (2013). Solvent-free synthesis of 1,2-disubstituted derivatives of 1,2- dihydroisoquinoline, 1,2 dihydroquinoline and 1,2-dihydropyridine. Zeitschrift f¨ur Naturforschung B, 68, 818-822. DOI: 10.5560/znb.2013-3095.Search in Google Scholar
Hasaninejad, A., Dadar, M., & Zare, A. (2012). Silica-supported phosphorus containing catalysts efficiently promoted synthesis of 1,8-dioxo-octahydro-xanthenes under solvent-free conditions. Chemical Science Transactions, 1, 233-238. DOI: 10.7598/cst2012.107.Search in Google Scholar
Horning, E. C., & Horning, M. G. (1964). Methone derivatives of aldehydes. The Journal of Organic Chemistry, 11, 95-99. DOI: 10.1021/jo01171a014.Search in Google Scholar
Jha, A., & Beal, J. (2004). Convenient synthesis of 12Hbenzo[ a]xanthenes from 2-tetralone. Tetrahedron Letters, 45, 8999-9001. DOI: 10.1016/j.tetlet.2004.10.046.Search in Google Scholar
Jin, T. S., Zhang, J. S., Xiao, J. C., Wang, A. Q., & Li, T. S. (2004). Clean synthesis of 1,8-dioxo-octahydroxanthene derivatives catalyzed by p-dodecylbenezenesulfonic acid in aqueous media. Synlett, 5, 866-870. DOI: 10.1055/s-2004-820022.Search in Google Scholar
Jin, T. S., Zhang, J. S., Wang, A. Q., & Li, T. S. (2005). Solid-state condensation reactions between aldehydes and 5,5-dimethyl-1,3-cyclohexanedione by grinding at room temperature. Synthetic Communications, 35, 2339-2345. DOI: 10.1080/00397910500187282.Search in Google Scholar
Karami, B., Zare, Z., & Eskandari, K. (2013). Molybdate sulfonic acid: Preparation, characterization and application as an effective and reusable catalyst for octahydroxanthene-1,8-dione synthesis. Chemical Papers, 67, 145-154. DOI: 10.2478/s11696-012-0263-y.Search in Google Scholar
Khosropour, A. R., Khodaei, M. M., & Moghannian, H. (2005). A facile, simple and convenient method for the synthesis of 14-alkyl or aryl-14H-dibenzo[a,j ]xanthenes catalyzed by pTSA in solution and solvent-free conditions. Synlett, 6, 955-958. DOI: 10.1055/s-2005-864837.Search in Google Scholar
Kiasat, A. R., & Fallah-Mehrjardi, M. (2008). B(HSO4)3: A novel and efficient solid acid catalyst for the regioselective conversion of epoxides to thiocyanohydrins under solventfree conditions. Journal of the Brazilian Chemical Society, 19, 1595-1599. DOI: 10.1590/s0103-50532008000800020.Search in Google Scholar
Kiasat, A. R., Mouradzadegun, A., & Saghanezhad, S. J. (2013). Phospho sulfonic acid: A novel and efficient solid acid catalyst for the one-pot preparation of indazolo[1,2-b]- phthalazinetriones. Journal of the Serbian Chemical Society, 78, 469-476. DOI: 10.2298/jsc120508088k.Search in Google Scholar
Kitahara, Y., & Tanaka, K. (2002). Synthesis, crystal structure and properties of thiaheterohelicenes containing phenolic hydroxy functions. Chemical Communications, 2002, 932-933. DOI: 10.1039/b110514k.Search in Google Scholar
Knight, C. G., & Stephens, T. (1989). Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles. Biochemical Journal, 258, 683-687.Search in Google Scholar
Knignt, D. W., & Little, P. B. (1998). The first high-yielding benzyne cyclization using a phenolic nucleophile: A new route to xanthenes. Synlett, 1998, 1141-1143. DOI: 10.1055/s-1998-1878.Search in Google Scholar
Ko, S. K., & Yao, C. F. (2006). Heterogeneous catalyst: Amberlyst-15 catalyzes the synthesis of 14-substituted-14Hdibenzo[ a,j]xanthenes under solvent-free conditions. Tetrahedron Letters, 47, 8827-8829. DOI: 10.1016/j.tetlet.2006.10. 072.Search in Google Scholar
Kumar, P. S., Sunil Kumar, B., Rajitha, B., Narsimha Reddy, P., Sreenivasulu, N., & Thirupathi Reddy, Y. (2006). A novel one pot synthesis of 14-aryl-14H-dibenzo[a,j ]xanthenes catalyzed by selectfluorTM under solvent free conditions.Search in Google Scholar
Arkivoc, 2006, 46-50. DOI: 10.3998/ark.5550190.0007.c05.Search in Google Scholar
Kumar, R., Nandi, G. C., Verma, R. K., & Singh, M. S. (2010).Search in Google Scholar
A facile approach for the synthesis of 14-aryl- or alkyl-14Hdibenzo[ a,j ]xanthenes under solvent-free condition. Tetrahedron Letters, 51, 442-445. DOI: 10.1016/j.tetlet.2009.11.064.Search in Google Scholar
Kuo, C.W., & Fang, J. M. (2001). Synthsis of xanthnes, indanes and tetrahydronaphthalenes via intramolecular phenyl-carbonyl coupling reactions. Synthetic Communications, 31, 877-892. DOI: 10.1081/scc-100103323.Search in Google Scholar
Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K.Search in Google Scholar
E. B., & Thomas, G. J. (1997). International Patent No.Search in Google Scholar
WO9706178. The International Patent System.Search in Google Scholar
Mokhtary, M., & Refahati, S. (2013). Polyvinylpolypyrrolidonesupported boron trifluoride (PVPP-BF3): Mild and efficient catalyst for the synthesis of 14-aryl-14H-dibenzo[a,j ] xanthenes and bis(naphthalen-2-yl-sulfane) derivatives. Dyes and Pigments, 99, 378-381. DOI: 10.1016/j.dyepig.2013.05.Search in Google Scholar
Madhav, J. V., Kuarm, B. S., & Rajitha, B. (2008). Dipyridine cobalt chloride: A novel and efficient catalyst for the synthesis of 14-aryl-14H-dibenzo[a,j ]xanthenes under solvent-free conditions.Search in Google Scholar
Arkivoc, 2008, 204-209. DOI: 10.3998/ark.5550190.Search in Google Scholar
0009.222.Search in Google Scholar
Mahdavinia, G. H., Rostamizadeh, S., Amani, A. M., & Emdadi, Z. (2009). Ultrasound-promoted greener synthesis of aryl-14H-dibenzo[a,j]xanthenes catalyzed by NH4H2PO4/ SiO2 in water. Ultrasonics sonochemistry, 16, 7-10. DOI: 10.1016/j.ultsonch.2008.05.010.Search in Google Scholar
Nagarapu, L., Kantevari, S., Mahankhali, V. C., & Apuri, S. (2007). Potassium dodecatungsto cobaltate trihydrate (K5CoW12O40 · 3H2O): A mild and efficient reusable catalyst for the synthesis of aryl-14H-dibenzo[a,j ]xanthenes under conventional heating and microwave irradiation. Catalysis Communications, 8, 1173-1177. DOI: 10.1016/j.catcom.Search in Google Scholar
2006.11.003.Search in Google Scholar
Nazari, S., Keshavarz, M., Karami, B., Iravani, N., & Vafaee- Nezhad, M. (2014). Imidazol-1-yl-acetic acid as a novel green bifunctional organocatalyst for the synthesis of 1,8- dioxooctahydroxanthenes under solvent-free conditions. Chinese Chemical Letters, 25, 317-320. DOI: 10.1016/j.cclet.Search in Google Scholar
2013.12.011.Search in Google Scholar
Pasha, M. A., & Jayashankara, V. P. (2007). Molecular iodine catalyzed synthesis of aryl-14H-dibenzo[a,j ]xanthenes under solvent-free condition. Bioorganic & Medicinal Chemistry Letters, 17, 621-623. DOI: 10.1016/j.bmcl.2006.11.009.Search in Google Scholar
Patil, S. B., Bhat, R. P., & Samant, S. D. (2006). Cation exchange resins: Efficient heterogeneous catalysts for facile synthesis of dibenzoxanthene from β-naphthol and aldehydes.Search in Google Scholar
Synthetic Communications, 36, 2163-2168. DOI: 10.1080/00397910600639372.Search in Google Scholar
Poupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G., & Lacroix, R. (1978). Synthesis and anti inflammatory properties of bis (2-hydroxy-1- naphthyl)methane derivatives. European Journal of Medicinal Chemistry, 13, 67-71.Search in Google Scholar
Rajitha, B., Kumar, B. S., Reddy, Y. T., Reddy, P. N., & Sreenivasulu, N. (2005). Sulfamic acid: A novel and efficient catalyst for the synthesis of aryl-14H-dibenzo[a,j ]xanthenes under conventional heating and microwave irradiation. Tetrahedron Letters, 46, 8691-8693. DOI: 10.1016/j.tetlet.2005.10.Search in Google Scholar
Rao, G. B. D., Kaushik, M. P., & Halve, A. K. (2012).Search in Google Scholar
An efficient synthesis of naphtha[1,2-e]oxazinone and 14- substituted-14H-dibenzo[a,j ]xanthene derivatives promoted by zinc oxide nanoparticle under thermal and solventfree conditions. Tetrahedron Letters, 53, 2741-2744. DOI: 10.1016/j.tetlet.2012.03.085.Search in Google Scholar
Rezayati, S., Hajinasiri, R., Erfani, Z., Rezayati, S., & Afshari- Sharifabad, S. (2014). Boric acid as a highly efficient and reusable catalyst for the one-pot synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions. Iranian Journal of Catalysis, 4, 157-162.Search in Google Scholar
Saini, A., Kumar, S., & Sandhu, J. S. (2006). A new LiBrcatalyzed, facile and efficient method for the synthesis of 14-alkyl or aryl-14H-dibenzo[a,j ]xanthenes and tetrahydrobenzo[ b]pyrans under solvent-free conventional and microwave heating. Synlett, 2006, 1928-1932. DOI: 10.1055/s-2006-947339.Search in Google Scholar
Sajjadifar, S., & Rezayati, S. (2014). Synthesis of 1,1-diacetates catalysed by silica-supported boron sulfonic acid under solvent-free conditions and ambient temperature. Chemical Papers, 68, 531-539. DOI: 10.2478/s11696-013-0480-z.Search in Google Scholar
Sarkar, A., Roy, S. R., Parikh, N., & Chakraborti, A. K. (2011).Search in Google Scholar
Nonsolvent application of ionic liquids: organo-catalysis by 1-alkyl-3-methylimidazolium cation based room-temperature ionic liquids for chemoselective N-tert-butyloxycarbonylation of amines and the influence of the C-2 hydrogen on catalytic efficiency. The Journal of Organic Chemistry, 76, 7132-7140.Search in Google Scholar
DOI: 10.1021/jo201102q.Search in Google Scholar
Seyyedhamzeh, M., Mirzaei, P., & Bazgir, A. (2008). Solventfree synthesis of aryl-14H-dibenzo[a,j ]xanthenes and 1,8- dioxo-octahydro-xanthenes using silica sulfuric acid as catalyst.Search in Google Scholar
Dyes and Pigments, 76, 836-839. DOI: 10.1016/j.dyepig.Search in Google Scholar
2007.02.001.Search in Google Scholar
Shakibaei, G. I., Mirzaei, P., & Bazgir, A. (2007). Dowex-50W promoted synthesis of 14-aryl-14H-dibenzo[a,j ]xanthene and 1,8-dioxo-octahydroxanthene derivatives under solvent-free conditions. Applied Catalalysis A: General, 325, 188-192.Search in Google Scholar
DOI: 10.1016/j.apcata.2007.03.008.Search in Google Scholar
Shaterian, H. R., Ghashang, M., & Mir, N. (2007). Aluminium hydrogensulfate as an efficient and heterogeneous catalyst for preparation of aryl 14H-dibenzo[a,j ]xanthene derivatives under thermal and solvent-free conditions. Arkivoc, 2007, 1-10. DOI: 10.3998/ark.5550190.0008.f01.Search in Google Scholar
Shirini, F., & Khaligh, N. G. (2012). Succinimide-N-sulfonic acid: An efficient catalyst for the synthesis of xanthene derivatives under solvent-free conditions. Dyes and Pigments, 95, 789-794. DOI: 10.1016/j.dyepig.2012.06.022.Search in Google Scholar
Shirini, F., Yahyazadeh, A., & Mohammadi, K. (2014). Onepot synthesis of various xanthene derivatives using ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate as an efficient and reusable catalyst under solvent-free conditions.Search in Google Scholar
Chinese Chemical Letters, 25, 341-347. DOI: 10.1016/j.cclet.Search in Google Scholar
2013.11.016.Search in Google Scholar
Sivaguru, P., & Lalitha, A. (2014). Ceric ammonium nitrate supported HY-zeolite: An efficient catalyst for the synthesis of 1,8-dioxo-octahydroxanthenes. Chinese Chemical Letters, 25, 321-323. DOI: 10.1016/j.cclet.2013.11.043.Search in Google Scholar
Song, G. Y., Wang, B., Luo, H. T., & Yang, L. M. (2007). Fe3+- montmorillonite as a cost effective and recyclable solid acidic catalyst for the synthesis of xanthenediones. Catalysis Communications, 8, 673-676. DOI: 10.1016/j.catcom.2005.12.Search in Google Scholar
Takeshiba, H., & Jiyoujima, T. (1981). Japan Patent No.Search in Google Scholar
56005480. Tokyo, Japan: Japan Patent Office.Search in Google Scholar
Tayebee, R., & Tizabi, S. (2012) Highly efficient and environmentally friendly preparation of 14-aryl-14H dibenzo[a,j ]xanthenes catalyzed by tungsto-divanado-phosphoric acid. Chinese Journal of Catalysis, 33, 962-969.Search in Google Scholar
Tisseh, Z. N., Azimi, S. C., Mirzaei, P., & Bazgir, A. (2008). The efficient synthesis of aryl-5H-dibenzo[b,i]xanthene-5,7,12,14 (13H)-tetraone leuco-dye derivatives. Dyes and Pigments, 79, 273-275. DOI: 10.1016/j.dyepig.2008.04.001.Search in Google Scholar
Wang J. Q., & Harvey, G. R. (2002). Synthesis of polycyclic xanthenes and furans via palladium catalyzed cyclization of polycyclic aryltriflate esters. Tetrahedron, 58, 5927-5931. DOI: 10.1016/s1872-2067(11)60387-2.Search in Google Scholar
Zareyee, D., Alizadeh, P., Ghandali, M. S., & Khalilzadeh, M.Search in Google Scholar
A. (2013). Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon. Chemical Papers, 67, 713-721. DOI: 10.2478/s11696-013-0369-x.Search in Google Scholar
Zareyee, D., & Serehneh, M. (2014). Recyclable CMK-5 supported sulfonic acid as an environmentally benign catalyst for solvent-free one-pot construction of coumarin through Pechmann condensation. Journal of Molecular Catalysis A: Chemical, 391, 88-91. DOI: 10.1016/j.molcata.2014.04.013.Search in Google Scholar
Zhang, Z. H., & Liu, Y. H. (2008). Antimony trichloride/SiO2 promoted synthesis of 9-ary-3,4,5,6,7,9-hexahydroxanthene-1,8-diones. Catalysis Communications, 9, 1715-1719. DOI: 10.1016/j.catcom.2008.01.031.Search in Google Scholar
Zolfigol, M. A., Vahedi, H., Massoudi, A., Sajjadifar, S., Louie, O., & Javaherneshan, N. (2011). Mild and efficient one pot synthesis of benzimidazoles from aldehydes by using BSA as a new catalyst. Clinical Biochemistry, 44, S219. DOI: 10.1016/j.clinbiochem.2011.08.973.Search in Google Scholar
Zolfigol, M. A., Khakyzadeh, V., Moosavi-Zare, A. R., Zare, A., Azimi, S. B., Asgari, Z., & Hasaninejad, A. (2012). Preparation of various xanthene derivatives over sulfonic acid functionalized imidazolium salts (SAFIS) as novel, highly efficient and reusable catalysts. Comptes Rendus Chimie, 15, 719-736. DOI: 10.1016/j.crci.2012.05.003. Search in Google Scholar
© 2015 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol
- Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol
- Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications
- Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy
- A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye
- Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
- Microfiltration of post-fermentation broth with backflushing membrane cleaning
- Mass transfer examination in electrodialysis using limiting current measurements
- Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation
- Structural and thermal characterization of copper(II) complexes with phenyl-2-pyridylketoxime and deposition of thin films by spin coating
- Oxidation of 4-nitro-o-xylene with nitric acid using N-hydroxyphthalimide under phase transfer conditions
- Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites
- Eco-friendly conjugate hydrocyanation of α-cyanoacrylates using potassium hexacyanoferrate(II) as cyanating reagent
- Morphological orders of spherulitic crystal textures in Belousov–Zhabotinsky-type oscillatory reaction system
- Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions
Articles in the same Issue
- Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol
- Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol
- Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications
- Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy
- A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye
- Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
- Microfiltration of post-fermentation broth with backflushing membrane cleaning
- Mass transfer examination in electrodialysis using limiting current measurements
- Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation
- Structural and thermal characterization of copper(II) complexes with phenyl-2-pyridylketoxime and deposition of thin films by spin coating
- Oxidation of 4-nitro-o-xylene with nitric acid using N-hydroxyphthalimide under phase transfer conditions
- Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites
- Eco-friendly conjugate hydrocyanation of α-cyanoacrylates using potassium hexacyanoferrate(II) as cyanating reagent
- Morphological orders of spherulitic crystal textures in Belousov–Zhabotinsky-type oscillatory reaction system
- Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions