Startseite Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications

  • Yi Cui , Yi-Jun Gong , Li Su , Cheng-Ke Wu , Sheng-Bin Pang und Su-Ling Feng EMAIL logo
Veröffentlicht/Copyright: 3. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A novel fluorometric method for the determination of adenine was proposed, based on the fluorescence quenching of a nuclear fast red-silver complex as a small molecule optical probe in the presence of adenine. The characteristic spectra of absorption, resonance Rayleigh scattering (RRS) and the fluorescence of the system were analysed. Adenine, Ag+ and nuclear fast red formed a sandwichtype complex. The composition of the compound and the mechanisms of fluorescence quenching were discussed. The optimal conditions for the reaction and the effects of co-existing substances were also investigated. The quenched fluorescence intensity was proportional to the concentration of adenine in the range of 0.03-0.90 μg mL-1, with the limit of detection of 0.023 μg mL-1. The method was applied satisfactorily to the determination of adenine in synthetic samples, herring sperm DNA, human sera and vitamin B4 tablets with recoveries from 95.3 % to 105 %.

References

Barcelo-Oliver, M., Baquero, B. A., Bauza, A., Garcia-Raso, A., Vich, R., Mata, I., Molins, E., Terron, A., & Frontera, A. (2013). Experimental and theoretical studies on the coordination chemistry of the N1-hexyl substituted pyrimidines (uracil, 5-fluorouracil and cytosine). Dalton Transactions, 42, 7631-7642. DOI: 10.1039/c3dt32922d.Suche in Google Scholar

Chang, Y. X., Qiu, Y. Q., Du, L. M., Li, C. F., & Guo, M. (2011). Determination of ranitidine, nizatidine and cimetidine by a sensitive fluorescent probe. The Analyst, 136, 4168-4173. DOI: 10.1039/c1an15078b.Suche in Google Scholar

Feng, S. L., & Liu, X. P. (2008). Spectrofluorimetric determination of uric acid based on its activation of catalytic oxidation of pyronine Y. Chemical Papers, 62, 318-322. DOI: 10.2478/s11696-008-0029-8.Suche in Google Scholar

Feng, S. L., Zhang, Y., & Fan, J. (2009). A spectrofluorimetric method for the determination of acitretin in pharmaceuticals. Chemical Papers, 63, 484-488. DOI: 10.2478/s11696-009-0041-7.Suche in Google Scholar

Gao, J., Granzhan, A., Qian, X. H., & Severin, K. (2010). Pattern-based sensing of short oligodeoxynucleotides with palladium-dye complexes. Chemical Communications, 46, 5515-5517. DOI: 10.1039/c0cc00389a.Suche in Google Scholar

Garcia del Moral, P., Arin,M. J., Resines, J. A., & Diez, M. T. (2005). Simultaneous determination of adenine and guanine in ruminant bacterial pellets by ion-pair HPLC. Journal of Chromatography B, 826, 257-260. DOI: 10.1016/j.jchromb. 2005.07.044.Suche in Google Scholar

Gholivand, M. B., & Romiani, A. A. (2006). Application of adsorptive stripping voltammetry to the simultaneous determination of bismuth and copper in the presence of nuclear fast red. Analytica Chimica Acta, 571, 99-104. DOI: 10.1016/j.aca.2006.04.054.Suche in Google Scholar

Ishikawa, M., Maruyama, Y., Ye, J. Y., & Futamata, M. (2002). Single-molecule imaging and spectroscopy of adenine and an analog of adenine using surface-enhanced Raman scattering and fluorescence. Journal of Luminescence, 98, 81-89. DOI: 10.1016/s0022-2313(02)00255-7.Suche in Google Scholar

Kingsley, G. R., & Robnett, O. (1961). Investigation of nuclear fast red method of Baar for direct spectrophotometric determination of calcium in serum, urine and spinal fluid. Analytical Chemistry, 33, 552-556. DOI: 10.1021/ac60172a020.Suche in Google Scholar

Kobayashi, H., Ogawa, M., Alford, R., Choyke, P. L., & Urano, Y. (2010). New strategies for fluorescent probe design in medical diagnostic imaging. Chemical Reviews, 110, 2620-2040. DOI: 10.1021/cr900263j.Suche in Google Scholar

Li, C. L., Liu, K. T., Lin, Y. W., & Chang, H. T. (2010). Fluorescence detection of lead(II) ions through their induced catalytic activity of DNAzymes. Analytical Chemistry, 83, 225-230. DOI: 10.1021/ac1028787.Suche in Google Scholar

Liu, E. B., & Xue, B. C. (2006). Flow injection determination of adenine at trace level based on luminol-K2Cr2O7 chemiluminescence in a micellar medium. Journal of Pharmaceutical and Biomedical Analysis, 41, 649-653. DOI: 10.1016/j.jpba.2005.12.012.Suche in Google Scholar

Liu, T., Zhu, X. B., Cui, L., Ju, P., Qu, X. J., & Ai, S. Y. (2011a). Simultaneous determination of adenine and guanine utilizing PbO2-carbon nanotubes-ionic liquid composite film modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 651, 216-221. DOI: 10.1016/j.jelechem.2010. 11.026.Suche in Google Scholar

Liu, X. X., Li, W., Shen, Q. P., Nie, Z., Guo, M. L., Han, Y. T., Liu, W., & Yao, S. Z. (2011b). The Ag+-G interaction inhibits the electrocatalytic oxidation of guanine. A novel mechanism for Ag+ detection. Talanta, 85, 1603-1608. DOI: 10.1016/j.talanta.2011.06.061.Suche in Google Scholar

Miao, F., Song, G. F., Sun, Y. M., Liu, Y., Guo, F. Q., Zhang, W. J., Tian, M. G., & Yu, X. Q. (2013). Fluorescent imaging of acidic compartments in living cells with a high selective novel one-photon ratiometric and two-photon acidic pH probe. Biosensors and Bioelectronics, 50, 42-49. DOI: 10.1016/j.bios.2013.05.060.Suche in Google Scholar

Ni, Y. N., Zhang, Q. L., & Kokot, S. (2010). Analysis of the interactions of mixtures of two β-agonists steroids with bovine serum albumin: A fluorescence spectroscopy and chemometrics investigation. The Analyst, 135, 2059-2068. DOI: 10.1039/c0an00161a.Suche in Google Scholar

Niu, X. L., Yang, W., Ren, J., Guo, H., Long, S. J., Chen, J. J., & Gao, J. Z. (2012). Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene-ionic liquid-chitosan composite film modified glassy carbon electrode. Electrochimica Acta, 80, 346-353. DOI: 10.1016/j.electacta.2012.07.041.Suche in Google Scholar

Niu, L. M., Lian, K. Q., Shi, H. M., Wu, Y. B., Kang, W. J., & Bi, S. Y. (2013). Characterization of an ultrasensitive biosensor based on a nano-Au/DNA/nano-Au/poly(SFR) composite and its application in the simultaneous determination of dopamine, uric acid, guanine and adenine. Sensors and Actuators B: Chemical, 178, 10-18. DOI: 10.1016/j.snb.2012.12.015.Suche in Google Scholar

Rodriguez Caceres, M. I., Duran-Meras, I., Ornelaz Soto, N. E., Lopez de Alba, P. L., & Lopez Martinez, L. (2008). Spectrofluorimetric determination of irinotecan in the presence of oxidant agents and metal ions. Talanta, 74, 1484-1491. DOI: 10.1016/j.talanta.2007.09.025.Suche in Google Scholar

Rybáková, S., Rajecky, M., Urbanova, J., Pěnčikova, K., Taborska, E., Gargallo, R., & Taborsky, P. (2013). Interaction of oligonucleotides with benzo[c]phenanthridine alkaloid sanguilutine. Chemical Papers, 67, 568-572. DOI: 10.2478/s11696-013-0340-x.Suche in Google Scholar

Sarkar, S., & Shunmugam, R. (2013). Unusual red shift of the sensor while detecting the presence of Cd2+ in aqueous environment. ACS Applied Materials & Interfaces, 5, 7379-7383. DOI: 10.1021/am401714j.Suche in Google Scholar

Sinha, S., Koner, R. R., Kumar, S., Mathew, J., Roy, A., Mukhopadhyay, S. K., Nandi, C. K., & Ghosh, S. (2013). Structurally tuned benzo[h]chromene derivative as Pb2+ selective ‘turn-on’ fluorescent sensor for living cell imaging. Journal of Luminescence, 143, 355-360. DOI: 10.1016/j. jlumin.2013.05.012.Suche in Google Scholar

Šponer, J., Sabat, M., Burda, J. V., Leszczynski, J., Hobza, P., & Lippert, B. (1999). Metal ions in non-complementary DNA base pairs: An ab initio study of Cu(I), Ag(I) and Au(I) complexes with the cytosine-adenine base pair. Journal of Biological Inorganic Chemistry, 4, 537-545. DOI: 10.1007/s007750050376.Suche in Google Scholar

Wagenknecht, P. S., & Ford, P. C. (2011). Metal centered ligand field excited states: Their roles in the design and performance of transition metal based photochemical molecular devices. Coordination Chemistry Reviews, 255, 591-616. DOI: 10.1016/j.ccr.2010.11.016.Suche in Google Scholar

Wang, Z. H., Xiao, S. F., & Chen, Y. (2006). β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. Journal of Electroanalytical Chemistry, 589, 237-242. DOI: 10.1016/j.jelechem.2006.02.014.Suche in Google Scholar

Wang, W. P., Zhou, L., Wang, S. M., Luo, Z., & Hu, Z. D. (2008). Rapid and simple determination of adenine and guanine in DNA extract by micellar electrokinetic chromatography with indirect laser-induced fluorescence detection. Talanta, 74, 1050-1055. DOI: 10.1016/j.talanta.2007.06.047.Suche in Google Scholar

Wen, G. Q., Liang, A. H., Jiang, Z. L., Liao, X. J., Li, J. F., & Jiang, H. S. (2010). Resonance scattering spectral detection of ultratrace Hg(II) using herring sperm DNA modified nanogold probe as catalyst. Luminescence, 25, 373-377. DOI: 10.1002/bio.1161.Suche in Google Scholar

Xu, Q. Y., Liu, Z. F., Hu, X. L., Kong, L., & Liu, S. P. (2011). Interaction of adenine with palladium chloride, determination of adenine via resonance Rayleigh scattering method. Analytica Chimica Acta, 707, 114-120. DOI: 10.1016/j.aca.2011.08.051.Suche in Google Scholar

Xu, Q. Y., Liu, Z. F., Hu, X. L., Kong, L., & Liu, S. P. (2012). Resonance Rayleigh scattering spectra of Cu2+-adenine- WO2− 4 system and its analytical application. The Analyst, 137, 868-874. DOI: 10.1039/c2an15981c.Suche in Google Scholar

Yin, H. S., Zhou, Y. L., Ma, Q., Ai, S. Y., Ju, P., Zhu, L. S., & Lu, L. N. (2010). Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process Biochemistry, 45, 1707-1712. DOI: 10.1016/j.procbio.2010.07.004. Suche in Google Scholar

Received: 2014-3-14
Revised: 2014-8-12
Accepted: 2014-8-22
Published Online: 2015-3-3
Published in Print: 2015-4-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol
  2. Sensitive and selective determination of peptides, PG and PGP, using a novel fluorogenic reagent 4-chlorobenzene-1,2-diol
  3. Spectroscopy studies of sandwich-type complex of silver(I) co-ordinated to nuclear fast red and adenine and its analytical applications
  4. Differentiation of selected blue writing inks by surface-enhanced Raman spectroscopy
  5. A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury(II) detection with the naked eye
  6. Phospho sulfonic acid as efficient heterogeneous Brønsted acidic catalyst for one-pot synthesis of 14H-dibenzo[a,j ]xanthenes and 1,8-dioxo-octahydro-xanthenes
  7. Microfiltration of post-fermentation broth with backflushing membrane cleaning
  8. Mass transfer examination in electrodialysis using limiting current measurements
  9. Determination of diffusivity from mass transfer measurements in a batch dialyzer: numerical analysis of pseudo-steady state approximation
  10. Structural and thermal characterization of copper(II) complexes with phenyl-2-pyridylketoxime and deposition of thin films by spin coating
  11. Oxidation of 4-nitro-o-xylene with nitric acid using N-hydroxyphthalimide under phase transfer conditions
  12. Synthesis of pyranopyrazoles, benzopyrans, amino-2-chromenes and dihydropyrano[c]chromenes using ionic liquid with dual Brønsted acidic and Lewis basic sites
  13. Eco-friendly conjugate hydrocyanation of α-cyanoacrylates using potassium hexacyanoferrate(II) as cyanating reagent
  14. Morphological orders of spherulitic crystal textures in Belousov–Zhabotinsky-type oscillatory reaction system
  15. Zwitterionic structures of selenocysteine-containing dipeptides and their interactions with Cu(II) ions
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0056/html?lang=de
Button zum nach oben scrollen