Home One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
Article
Licensed
Unlicensed Requires Authentication

One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst

  • Abolghasem Davoodnia EMAIL logo , Sadegh Allameh , Samineh Fazli and Niloofar Tavakoli-Hoseini
Published/Copyright: July 23, 2011
Become an author with De Gruyter Brill

Abstract

A convenient method for the synthesis of tetrahydrobenzo[b]pyrans by a one-pot three-component cyclocondensation of dimedone, aryl aldehydes, and malononitrile in water using silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst is described. The present methodology offers several advantages, such as a simple procedure with ease of handling, short reaction time, high yields, and the absence of any volatile and hazardous organic solvents.

[1] Aoyama, T., Takido, T., & Kodomari, M. (2004). Silica gelsupported polyphosphoric acid (PPA/SiO2) as an efficient and reusable catalyst for conversion of carbonyl compounds into oxathioacetals and dithioacetals. Synlett, 13, 2307–2310. DOI: 10.1055/s-2004-832812. http://dx.doi.org/10.1055/s-2004-83281210.1055/s-2004-832812Search in Google Scholar

[2] Armetso, D., Horspool, W. M., Martin, N., Ramos, A., & Seoane, C. (1989). Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3,5-dicyano-6-phenyl-4H-pyrans. The Journal of Organic Chemistry, 54, 3069–3072. DOI: 10.1021/jo00274a021. http://dx.doi.org/10.1021/jo00274a02110.1021/jo00274a021Search in Google Scholar

[3] Balalaie, S., Bararjanian, M., Amani, A. M., & Movassagh, B. (2006). (S)-Proline as a neutral and efficient catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media. Synlett, 2006, 263–266. DOI: 10.1055/s-2006-926227. http://dx.doi.org/10.1055/s-2006-92622710.1055/s-2006-926227Search in Google Scholar

[4] Bonsignore, L., Loy, G., Secci, D., & Calignano, A. (1993). Synthesis and pharmacological activity of 2-oxo-(2H) 1-benzopyran-3-carboxamide derivatives. European Journal of Medicinal Chemistry, 28, 517–520. DOI: 10.1016/0223-5234(93)90020-F. http://dx.doi.org/10.1016/0223-5234(93)90020-F10.1016/0223-5234(93)90020-FSearch in Google Scholar

[5] Corma, A., & Garcia, H. (2006). Silica-bound homogenous catalysts as recoverable and reusable catalysts in organic synthesis. Advanced Synthesis & Catalysis, 348, 1391–1412. DOI:10.1002/adsc.200606192. http://dx.doi.org/10.1002/adsc.20060619210.1002/adsc.200606192Search in Google Scholar

[6] Davoodnia, A. (2010). H2SO4/silica gel: An efficient and reusable heterogeneous catalyst for the synthesis of pyrazolo [4,3-e][1,2,4]triazolo[4,3-c]pyrimidines. Asian Journal of Chemistry, 22, 1595–1598. Search in Google Scholar

[7] Davoodnia, A., Allameh, S., Fakhari, A. R., & Tavakoli-Hoseini, N. (2010a). Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst. Chinese Chemical Letters, 21, 550–553. DOI:10.1016/j.cclet.2010.01.032. http://dx.doi.org/10.1016/j.cclet.2010.01.03210.1016/j.cclet.2010.01.032Search in Google Scholar

[8] Davoodnia, A., Bakavoli, M., Barakouhi, Gh., & Tavakoli-Hoseini, N. (2007a). A new route to the synthesis of thieno[2,3-d]pyrimidin-4(3H)-one derivatives catalyzed by 12-tungstophosphoric acid (H3PW12O40). Chinese Chemical Letters, 18, 1483–1486. DOI: 10.1016/j.cclet.2007.10.013. http://dx.doi.org/10.1016/j.cclet.2007.10.01310.1016/j.cclet.2007.10.013Search in Google Scholar

[9] Davoodnia, A., Bakavoli, M., Mohseni, Sh., & Tavakoli-Hoseini, N. (2008a). Synthesis of pyrido[3′,2′:4,5]thieno[2,3-e][1,2,4]triazolo[4,3-a]pyrimidin-5(4H)-one derivatives Monatshefte für Chemie, 139, 963–965. DOI: 10.1007/s00706-007-0844-6. http://dx.doi.org/10.1007/s00706-007-0844-610.1007/s00706-007-0844-6Search in Google Scholar

[10] Davoodnia, A., Bakavoli, M., Moloudi, R., Khashi, M., & Tavakoli-Hoseini, N. (2010b). 7-Deazapurines: Synthesis of new pyrrolo[2,3-d]pyrimidin-4-ones catalyzed by a Brønstedacidic ionic liquid as a green and reusable catalyst. Chinese Chemical Letters, 21, 1–4. DOI: 10.1016/j.cclet.2009.09.002. http://dx.doi.org/10.1016/j.cclet.2009.09.00210.1016/j.cclet.2009.09.002Search in Google Scholar

[11] Davoodnia, A., Bakavoli, M., Moloudi, R., Tavakoli-Hoseini, N., & Khashi, M. (2010c). Highly efficient, one-pot, solvent-free synthesis of 2,4,6-triarylpyridines using a Brønsted-acidic ionic liquid as reusable catalyst. Monatshefte für Chemie, 141, 867–870. DOI: 10.1007/s00706-010-0329-x. http://dx.doi.org/10.1007/s00706-010-0329-x10.1007/s00706-010-0329-xSearch in Google Scholar

[12] Davoodnia, A., Bakavoli, M., Pooryaghoobi, N., & Roshani, M. (2007b). A convenient approach to the synthesis of new substituted isoxazolo[5,4-D] pyrimidin-4(5H)-ones. Heterocyclic Communications, 13, 323–325. http://dx.doi.org/10.1515/HC.2007.13.5.32310.1515/HC.2007.13.5.323Search in Google Scholar

[13] Davoodnia, A., Bakavoli, M., Vahedinia, A., Rahimizadeh, M., & Roshani, M. (2006). Synthesis of 1H-pyrazolo [4′,3′:5,6] pyrimido[2,1-a]isoindol-4(10H)-ones. Derivatives of a new ring system. Heterocycles, 68, 801–806. DOI: 10.3987/COM-06-10669. http://dx.doi.org/10.3987/COM-06-1066910.3987/COM-06-10669Search in Google Scholar

[14] Davoodnia, A., Behmadi, H., Zare Bidaki, A., Bakavoli, M., & Tavakoli Hoseini, N. (2007c). A facile one-pot synthesis of new thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione derivatives. Chinese Chemical Letters, 18, 1163–1165. DOI: 10.1016/j.cclet.2007.07.024. http://dx.doi.org/10.1016/j.cclet.2007.07.02410.1016/j.cclet.2007.07.024Search in Google Scholar

[15] Davoodnia, A., Heravi, M. M., Rezaei-Daghigh, L., & Tavakoli-Hoseini, N. (2010d). A modified and green procedure for the synthesis of β-amido ketones using a Brønsted-acidic ionic liquid as novel and reusable catalyst. Chinese Journal of Chemistry, 28, 429–433. DOI: 10.1002/cjoc.201090091. http://dx.doi.org/10.1002/cjoc.20109009110.1002/cjoc.201090091Search in Google Scholar

[16] Davoodnia, A., Heravi, M. M., Rezaei-Daghigh, L., & Tavakoli-Hoseini, N. (2009). Brønsted-acidic ionic liquid [HO3S(CH2)4 MIM][HSO4] as efficient and reusable catalyst for one-pot synthesis of β-acetamido ketones. Monatshefte für Chemie, 140, 1499–1502. DOI: 10.1007/s00706-009-0193-8. http://dx.doi.org/10.1007/s00706-009-0193-810.1007/s00706-009-0193-8Search in Google Scholar

[17] Davoodnia, A., Heravi, M. M., Safavi-Rad, Z., & Tavakoli-Hoseini, N. (2010e). Green, one-pot, solvent-free synthesis of 1,2,4,5-tetrasubstituted imidazoles using a Brønsted acidic ionic liquid as novel and reusable catalyst. Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 40, 2588–2597. DOI: 10.1080/00397910903289271. 10.1080/00397910903289271Search in Google Scholar

[18] Davoodnia, A., Roshani, M., Malaeke, S. H., & Bakavoli, M. (2008b). A rapid synthesis of isoxazolo[5,4-d]pyrimidin-4(5H)-ones under microwave irradiation with solid acid catalysis in solvent-free conditions. Chinese Chemical Letters, 19, 525–528. DOI: 10.1016/j.cclet.2008.01.037. http://dx.doi.org/10.1016/j.cclet.2008.01.03710.1016/j.cclet.2008.01.037Search in Google Scholar

[19] Davoodnia, A., Roshani, M., Saleh-Nadim, E., Bakavoli, M., & Tavakoli-Hoseini, N. (2007d). Microwave-assisted synthesis of new pyrimido[4′,5′:4,5]thiazolo[3,2-a] benzimidazol-4(3H)-one derivatives in solvent-free condition. Chinese Chemical Letters, 18, 1327–1330. DOI: 10.1016/j.cclet.2007.09.004. 10.1016/j.cclet.2007.09.004Search in Google Scholar

[20] DeBlase, C., & Leadbeater, N. E. (2010). Ligand-free CuI-catalyzed cyanation of aryl halides using K4[Fe(CN)6] as cyanide source and water as solvent. Tetrahedron, 66, 1098–1101. DOI: 10.1016/j.tet.2009.11.016. http://dx.doi.org/10.1016/j.tet.2009.11.01610.1016/j.tet.2009.11.016Search in Google Scholar

[21] Devi, I., & Bhuyan, P. J. (2004). Sodium bromide catalysed one-pot synthesis of tetrahydrobenzo[b]pyrans via a three-component cyclocondensation under microwave irradiation and solvent free conditions. Tetrahedron Letters, 45, 8625–8627. DOI: 10.1016/j.tetlet.2004.09.158. http://dx.doi.org/10.1016/j.tetlet.2004.09.15810.1016/j.tetlet.2004.09.158Search in Google Scholar

[22] Foye, W. O. (1991). Principal di chemico farmaceutica. Padova, Italy: Piccin. Search in Google Scholar

[23] Green, G. R., Evans, J. M., & Vong, A. K. (1995). Pyrans and their benzo derivatives: Applications. In A. R. Katritzky, C. W. Rees, & E. F. V. Scriven (Eds.), Comprehensive heterocyclic chemistry II (pp. 469–500). Oxford, UK: Pergamon Press. DOI: 10.1016/B978-008096518-5.00112-X. 10.1016/B978-008096518-5.00112-XSearch in Google Scholar

[24] Hajipour, A. R., & Ruoho, A. E. (2005). Nitric acid in the presence of P2O5 supported on silica gel—a useful reagent for nitration of aromatic compounds under solvent-free conditions. Tetrahedron Letters, 46, 8307–8310. DOI:10.1016/j.tetlet.2005.09.178. http://dx.doi.org/10.1016/j.tetlet.2005.09.17810.1016/j.tetlet.2005.09.178Search in Google Scholar

[25] Hekmatshoar, R., Majedi, S., & Bakhtiari, K. (2008). Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives. Catalysis Communications, 9, 307–310. DOI: 10.1016/j.catcom.2007.06.016. http://dx.doi.org/10.1016/j.catcom.2007.06.01610.1016/j.catcom.2007.06.016Search in Google Scholar

[26] Jin, T.-S., Wang, A.-Q., Shi, F., Han, L.-S., Liu, L.-B., & Li, T.-S. (2006). Hexadecyldimethyl benzyl ammonium bromide: an efficient catalyst for a clean one-pot synthesis of tetrahydrobenzopyran derivatives in water. ARKIVOC, 2006(xiv), 78–86. 10.3998/ark.5550190.0007.e11Search in Google Scholar

[27] Jin, T.-S., Wang, A.-Q., Wang, X., Zhang, J.-S., & Li, T.-S. (2004). A clean one-pot synthesis of tetrahydrobenzo[b]pyran derivatives catalyzed by hexadecyltrimethylammonium bromide (HTMAB) in aqueous media. Synlett, 2004, 871–873. DOI: 10.1055/s-2004-820025. http://dx.doi.org/10.1055/s-2004-82002510.1055/s-2004-820025Search in Google Scholar

[28] Jung, Y., & Marcus, R. A. (2007). On the theory of organic catalysis “on water”. Journal of the American Chemical Society, 129, 5492–5502. DOI: 10.1021/ja068120f. http://dx.doi.org/10.1021/ja068120f10.1021/ja068120fSearch in Google Scholar PubMed

[29] Kantevari, S., Bantu, R., & Nagarapu, L. (2007). HClO4-SiO2 and PPA-SiO2 catalyzed efficient one-pot Knoevenagel condensation, Michael addition and cyclo-dehydration of dimedone and aldehydes in acetonitrile, aqueous and solvent free conditions: Scope and limitations. Journal of Molecular Catalysis A: Chemical, 269, 53–57. DOI: 10.1055/s-2004-820025. http://dx.doi.org/10.1016/j.molcata.2006.12.03910.1055/s-2004-820025Search in Google Scholar

[30] Kumar, V., Mitra, R., Bhattarai, S., & Nair, V. A. (2011). Reaction on water: A greener approach for the thia Michael addition on N-aryl maleimides. Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 41, 392–404. DOI: 10.1080/00397910903576651. 10.1080/00397910903576651Search in Google Scholar

[31] Li, J.-T., Xu, W.-Z., Yang, L.-C., & Li, T.-S. (2004). One-pot synthesis of 2-amino-4-aryl-3-carbalkoxy-7,7-dimethyl-5,6,7,8-tetrahydrobenzo[b]pyran derivatives catalyzed by KF/basic Al2O3 under ultrasound irradiation. Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 34, 4565–4571. DOI: 10.1081/SCC-200043233. 10.1081/SCC-200043233Search in Google Scholar

[32] Maghsoodlou, M. T., Habibi Khorassani, S. M., Heydari, R., Hazeri, N., Sajadikhah, S. S., Rostamizadeh, M., & Keishams, L. (2010). Silica supported polyphosphoric acid (PPA-SiO2): an efficient and reusable heterogeneous catalyst for the one-pot synthesis of α-amino phosphonates. Turkish Journal of Chemistry, 34, 565–570. DOI: 10.3906/kim-0910-28. 10.3906/kim-0910-28Search in Google Scholar

[33] Mahdavinia, G. H., Rostamizadeh, S., Amani, A. M., & Emdadi, Z. (2009). Ultrasound-promoted greener synthesis of aryl-14-H-dibenzo[a, j]xanthenes catalyzed by NH4H2PO4/SiO2 in water. Ultrasonics Sonochemistry, 16, 7–10. DOI: 10.1016/j.ultsonch.2008.05.010. http://dx.doi.org/10.1016/j.ultsonch.2008.05.01010.1016/j.ultsonch.2008.05.010Search in Google Scholar PubMed

[34] Narayan, S., Muldoon, J., Finn, M. G., Fokin, V. V., Kolb, H. C., & Sharpless, K. B. (2005). “On water”: Unique reactivity of organic compounds in aqueous suspension. Angewandte Chemie International Edition, 44, 3275–3279. DOI: 10.1002/anie.200462883. http://dx.doi.org/10.1002/anie.20046288310.1002/anie.200462883Search in Google Scholar

[35] Ribe, S., & Wipf, P. (2001). Water-accelerated organic transformations. Chemical Communications, 4, 299–307. DOI:10.1039/B008252J. http://dx.doi.org/10.1039/b008252j10.1039/b008252jSearch in Google Scholar

[36] Shaterian, H. R., Hosseinian, A., & Ghashang, M. (2009a). PPA-SiO2 catalyzed multi-component synthesis of N-[α-(β-hydroxy-α-naphthyl)(benzyl)] O-alkyl carbamate derivatives. Chinese Journal of Chemistry, 27, 821–824. DOI: 10.1002/chin.200936093. http://dx.doi.org/10.1002/cjoc.20099013710.1002/chin.200936093Search in Google Scholar

[37] Shaterian, H. R., Khorami, F., Amirzadeh A., & Ghashang, M. (2009b). Preparation and application of perchloric acid supported on alumina (Al2O3-HClO4) to the synthesis of α-(α-amidobenzyl)-β-naphthols. Chinese Journal of Chemistry, 27, 815–820. DOI: 10.1002/cjoc.200990136. http://dx.doi.org/10.1002/cjoc.20099013610.1002/cjoc.200990136Search in Google Scholar

[38] Shen, Z.-L., Ji, S.-J., & Loh, T.-P. (2008). Indium(III) iodide-mediated Strecker reaction in water: an efficient and environmentally friendly approach for the synthesis of α-aminonitrile via a three-component condensation. Tetrahedron, 64, 8159–8163. DOI: 10.1016/j.tet.2008.06.047. http://dx.doi.org/10.1016/j.tet.2008.06.04710.1016/j.tet.2008.06.047Search in Google Scholar

[39] Singh, K., Singh, J., & Singh, H. (1996). Synthetic entry into fused pyran derivatives through carbon transfer reactions of 1,3-oxazinanes and oxazolidines with carbon nucleophiles. Tetrahedron, 52, 14273–14280. DOI: 10.1016/0040-4020(96)00879-4. http://dx.doi.org/10.1016/0040-4020(96)00879-410.1016/0040-4020(96)00879-4Search in Google Scholar

[40] Sun, W.-B., Zhang, P., Fan, J., Chen, S.-H., & Zhang, Z.-H. (2010). Lithium bromide as a mild, efficient, and recyclable catalyst for the one-pot synthesis of tetrahydro-4H-chromene derivatives in aqueous media. Synthetic Communications, 40, 587–594. DOI: 10.1002/chin.201031148. http://dx.doi.org/10.1080/0039791090300707910.1002/chin.201031148Search in Google Scholar

[41] Tavakoli-Hoseini, N., & Davoodnia, A. (2010). Silica gel-supported polyphosphoric acid: A mild, efficient and reusable catalyst for the one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles. Asian Journal of Chemistry, 22, 7197–7200. Search in Google Scholar

[42] von Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 37, 1443–1467. DOI: 10.1016/S0043-1354(02)00457-8. http://dx.doi.org/10.1016/S0043-1354(02)00457-810.1016/S0043-1354(02)00457-8Search in Google Scholar

[43] Wang, L.-M., Shao, J.-H., Tian, H., Wang, Y.-H., & Liu, B. (2006). Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot synthesis of benzopyran derivatives. Journal of Fluorine Chemistry, 127, 97–100. DOI: 10.1016/j.jfluchem.2005.10.004. http://dx.doi.org/10.1016/j.jfluchem.2005.10.00410.1016/j.jfluchem.2005.10.004Search in Google Scholar

[44] Zeinali-Dastmalbaf, M., Davoodnia, A., Heravi, M. M., Tavakoli-Hoseini, N., Khojastehnezhad, A., & Zamani, H. A. (2011). Silica gel-supported polyphosphoric acid (PPASiO2) catalyzed one-pot multi-component synthesis of 3,4-dihydropyrimidin-2(1H)-ones and -thiones: An efficient method for the Biginelli reaction. Bulletin of the Korean Chemical Society, 32, 656–658. DOI: 10.5012/bkcs.2011.32.2.656. http://dx.doi.org/10.5012/bkcs.2011.32.2.65610.5012/bkcs.2011.32.2.656Search in Google Scholar

Published Online: 2011-7-23
Published in Print: 2011-10-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. 5th conference on membrane science and technology PERMEA 2010
  2. A procedure for the determination of dichloromethane and tetrachloroethene in water using pervaporation and gas chromatography
  3. Modeling of diffusive transport of benzoic acid through a liquid membrane
  4. Comparison of ceramic capillary membrane and ceramic tubular membrane with inserted static mixer
  5. New approach to regeneration of an ionic liquid containing solvent by molecular distillation
  6. Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane
  7. Determination of carbon in solidified sodium coolant using new ICP-OES methods
  8. Interpretation of interactions of halogenated hydrocarbons with modified silica adsorbent coated with 3-benzylketoimine group silane
  9. Adaptive nonlinear control of a continuous stirred tank reactor
  10. Anaerobic baffled reactor treatment of biodiesel-processing wastewater with high strength of methanol and glycerol: reactor performance and biogas production
  11. Analysis of streptolydigin degradation and conversion in cultural supernatants of Streptomyces lydicus AS 4.2501
  12. Spectroscopic and magnetic evidence of coordination properties of bioactive diethyl (pyridin-4-ylmethyl)phosphate ligand with chloride transition-metal ions
  13. Microstructure and properties of polyhydroxybutyrate-calcium phosphate cement composites
  14. Intercalation of basic amino acids into layered zirconium proline-N-methylphosphonate phosphate
  15. Effect of sol-gel preparation method on particle morphology in pure and nanocomposite PZT thin films
  16. Synthesis, spectroscopic and configurational study, and ab initio calculations of new diazaphospholanes
  17. Synthesis and in vitro antimicrobial activity of new 3-(2-morpholinoquinolin-3-yl) substituted acrylonitrile and propanenitrile derivatives
  18. Silicon-based thiourea-mediated and microwave-assisted thio-Michael addition under solvent-free reaction conditions
  19. One-pot synthesis of 2-amino-3-cyano-4-arylsubstituted tetrahydrobenzo[b]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO2) as an efficient and reusable catalyst
  20. Comparison and optimisation of biodiesel production from Jatropha curcas oil using supercritical methyl acetate and methanol
  21. Determination of photoredox properties of individual kinetically labile complexes in equilibrium systems
  22. A halogenated coumarin from Ficus krishnae
  23. 4β-Isocyanopodophyllotoxins: valuable precursors for the synthesis of new podophyllotoxin analogues
  24. Environmentally benign one-pot synthesis and antimicrobial activity of 1-methyl-2,6-diarylpiperidin-4-ones
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-011-0064-8/html
Scroll to top button