Azido and desamino analogs of the marine natural product oroidin
-
Lisa Anders
Abstract
As part of our program on the synthesis and reactivity of the pyrrole-imidazole alkaloids from marine sponges, the synthesis of the 2-azido analog of the key marine natural product oroidin is reported. In addition, desaminooroidin and its alkyne analog were synthesized. Red-Al reduction of a 4-alkynylimidazole intermediate afforded the (E)-alkene, without having to pass via the (Z)-alkene. Coupling of 4,5-dibromopyrrole-2-carboxylic acid with 2-azidoimidazolylprop-2-en-1-amine was best achieved by EDCI-mediated coupling, which was superior to using the corresponding trichloromethylketone. Use of t-BuOK in acetonitrile can be recommended for the coupling of non-azidated alkenyl and alkynylimidazoles. The azido analog of oroidin underwent click cycloadditions to imidazolyltriazoles.
Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.
Acknowledgement
TU Braunschweig is thanked for financial support. Vincent Malecha and Johanna Rödiger are thanked for laboratory assistance.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1(a). Forenza, S., Minale, L., Riccio, R., Fattorusso, E. J. Chem. Soc., Chem. Commun. 1971, 1129–1130.10.1039/c29710001129Search in Google Scholar
(b) Garcia, E. E., Benjamin, L. E., Frye, R. I. J. Chem. Soc., Chem. Commun. 1973, 78–79.10.1039/c39730000078Search in Google Scholar
2. Lindel, T. Alkaloids Chem. Biol. 2017, 77, 117–219; https://doi.org/10.1016/bs.alkal.2016.12.001.Search in Google Scholar PubMed
3. Al-Mourabit, A., Zancanella, M. A., Tilvi, S., Romo, D. Nat. Prod. Rep. 2011, 28, 1229–1260; https://doi.org/10.1039/c0np00013b.Search in Google Scholar PubMed PubMed Central
4. Pöverlein, C., Breckle, G., Lindel, T. Org. Lett. 2006, 8, 819–821; https://doi.org/10.1021/ol0526219.Search in Google Scholar PubMed
5. Lejeune, C., Tian, H., Appenzeller, J., Ermolenko, L., Martin, M.-T., Al-Mourabit, A. J. Nat. Prod. 2013, 76, 903–908; https://doi.org/10.1021/np400048r.Search in Google Scholar PubMed
6. Lindel, T., Breckle, G., Hochgürtel, M., Volk, C., Grube, A., Köck, M. Tetrahedron Lett. 2004, 45, 8149–8152; https://doi.org/10.1016/j.tetlet.2004.09.048.Search in Google Scholar
7. Barrios Sosa, A. C., Yakushijin, K., Horne, D. A. Org. Lett. 2000, 2, 3443–3444; https://doi.org/10.1021/ol000233v.Search in Google Scholar PubMed
8. Stout, P. E., Morinaka, B. I., Wang, Y.-G., Romo, D., Molinski, T. F. J. Nat. Prod. 2012, 75, 527–530; https://doi.org/10.1021/np300051k.Search in Google Scholar PubMed PubMed Central
9. Stout, P. E., Wang, Y.-G., Romo, D., Molinski, T. F. Angew. Chem. Int. Ed. 2012, 51, 4877–4881; https://doi.org/10.1002/anie.201108119.Search in Google Scholar PubMed PubMed Central
10. Gadosy, T. A., McClelland, R. A. J. Am. Chem. Soc. 1999, 121, 1459–1465; https://doi.org/10.1021/ja9827090.Search in Google Scholar
11. Polshakov, D., Rai, S., Wilson, R. M., Mack, E. T., Vogel, M., Krause, J. A., Burdzinski, G., Platz, M. S. Biochemistry 2005, 44, 11241–11253; https://doi.org/10.1021/bi050859z.Search in Google Scholar PubMed
12. Nilov, D. I., Komarov, D. Y., Panov, M. S., Karabaeva, K. E., Mereshchenko, A. S., Tarnovsky, A. N., Wilson, R. M. J. Am. Chem. Soc. 2013, 135, 3423–3438; https://doi.org/10.1021/ja3068148.Search in Google Scholar PubMed
13. Sudakow, A., Jones, P. G., Lindel, T. Eur. J. Org. Chem. 2012, 681–684.10.1002/ejoc.201101711Search in Google Scholar
14. Sudakow, A., Papke, U., Lindel, T. Chem. Eur. J. 2014, 20, 10223–10226; https://doi.org/10.1002/chem.201402959.Search in Google Scholar PubMed
15. Kanitz, N. E., Lindel, T. Z. Naturforsch. 2016, 71b, 1287–1300.10.1515/znb-2016-0195Search in Google Scholar
16. Kanitz, N. E., Fresia, M., Jones, P. G., Lindel, T. Eur. J. Org. Chem. 2021, 3573–3578.10.1002/ejoc.202100603Search in Google Scholar
17. Breckle, G., Polborn, K., Lindel, T. Z. Naturforsch. 2003, 58b, 451–456.10.1515/znb-2003-0516Search in Google Scholar
18. Wang, Y.-G., Morinaka, B. I., Reyns, J. C. P., Wolff, J. J., Romo, D., Molinski, T. F. J. Nat. Prod. 2010, 73, 428–434; https://doi.org/10.1021/np900638e.Search in Google Scholar PubMed PubMed Central
19. Berrée, F., Bleis, P. G.-L., Carboni, B. Tetrahedron Lett. 2002, 43, 4935–4938; https://doi.org/10.1016/s0040-4039(02)00947-4.Search in Google Scholar
20. Kirk, K. L. J. Heterocycl. Chem. 1985, 22, 57–59.10.1002/jhet.5570220115Search in Google Scholar
21. Hochgürtel, M., Lindel, T. J. Org. Chem. 2000, 65, 2806–2809; https://doi.org/10.1021/jo991395b.Search in Google Scholar PubMed
22. Ollivier, N., Dheur, J., Mhidia, R., Blanpain, A., Melnyk, O. Org. Lett. 2010, 12, 5238–5241; https://doi.org/10.1021/ol102273u.Search in Google Scholar PubMed
23. Alkorta, I., Blanco, F., Elguero, J. Tetrahedron 2010, 66, 5071–5081; https://doi.org/10.1016/j.tet.2010.04.119.Search in Google Scholar
24. Zidar, N., Žula, A., Tomašič, T., Rogers, M., Kirby, R. W., Tytgat, J., Peigneur, S., Kikelj, D., Ilaš, J., Mašič, L. P. Eur. J. Med. Chem. 2017, 139, 232–241; https://doi.org/10.1016/j.ejmech.2017.08.015.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2023-0305).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung B – Chemical Sciences. zum 70. Geburtstag
- Research Articles
- Ferrocenylmethylation of theophylline
- Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
- Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
- 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
- The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
- N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
- Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
- Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
- Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
- Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
- Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
- Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
- Structure and spectroscopic properties of etherates of the beryllium halides
- The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
- Azido and desamino analogs of the marine natural product oroidin
- High-pressure high-temperature preparation of CeGe3
- On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
- A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
- Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
- Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
- Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies