Home Ferrocenylmethylation of theophylline
Article
Licensed
Unlicensed Requires Authentication

Ferrocenylmethylation of theophylline

  • Daniel Weinem , Jana M. Strumberger and Fabian Mohr EMAIL logo
Published/Copyright: March 8, 2023
Become an author with De Gruyter Brill

Abstract

The sodium salt of theophylline is ferrocenylmethylated at N7 in water using [FcCH2NMe3]I. Further alkylation at N9 with various reagents and under different conditions was however unsuccessful. The molecular structures of both ferrocenylmethylated theophylline and sodium theophyllinate were determined by single crystal X-ray diffraction.


Dedicated to Professor Gerhard Müller on the occasion of his 70th birthday.



Corresponding author: Fabian Mohr, Anorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany, E-mail:

Acknowledgments

We gratefully acknowledge Siegfried PharmaChemikalien, Minden for a generous gift of sodium theophyllinate suspension.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Chen, S. C. J. Organomet. Chem. 1980, 202, 183–189; https://doi.org/10.1016/s0022-328x(00)90515-1.Search in Google Scholar

2. Houlton, A., Isaac, C. J., Gibson, A. E., Horrocks, B. R., Clegg, W., Elsegood, M. R. J. J. Chem. Soc., Dalton Trans. 1999, 3229–3234; https://doi.org/10.1039/a905168f.Search in Google Scholar

3. Price, C., Aslanoglu, M., Isaac, C. J., Elsegood, M. R. J., Clegg, W., Horrocks, B. R., Houlton, A. J. Chem. Soc., Dalton Trans. 1996, 4115–4120; https://doi.org/10.1039/dt9960004115.Search in Google Scholar

4. Lanez, E., Bechki, L., Lanez, T. Chem. Chem. Technol. 2020, 14, 146–153; https://doi.org/10.23939/chcht14.02.146.Search in Google Scholar

5. Gumenyuk, V. V., Zhilina, Z. V., Nekrasov, Y. S., Babin, V. N., Belousov, Y. A. Russ. Chem. Bull. 1997, 46, 168–170; https://doi.org/10.1007/bf02495368.Search in Google Scholar

6. Zhilina, Z. V., Gumenyuk, V. V., Nekrasov, Y. S., Babin, V. N., Snegur, L. V., Starikova, Z. A., Yanovsky, A. I. Russ. Chem. Bull. 1998, 47, 1781–1784; https://doi.org/10.1007/bf02495705.Search in Google Scholar

7. Snegur, L. V., Boev, V. I., Babin, V. N., Moskalenko, A. I., Nekrasov, Y. S. Russ. J. Org. Chem. 2002, 38, 1076–1078; https://doi.org/10.1023/a:1020838620620.10.1023/A:1020838620620Search in Google Scholar

8. Simenel, A. A., Morozova, E. A., Snegur, L. V., Zykova, S. I., Kachala, V. V., Ostrovskaya, L. A., Bluchterova, N. A., Fomina, M. M. Appl. Organomet. Chem. 2009, 23, 219–224; https://doi.org/10.1002/aoc.1500.Search in Google Scholar

9. de Champdoré, M., Di Fabio, G., Messere, A., Montesarchio, D., Piccialli, G., Loddo, R., La Colla, M., La Colla, P. Tetrahedron 2004, 60, 6555–6563.10.1016/j.tet.2004.06.013Search in Google Scholar

10. Kowalski, K. Coord. Chem. Rev. 2016, 317, 132–156; https://doi.org/10.1016/j.ccr.2016.02.008.Search in Google Scholar

11. Snegur, L. V., Simenel, A. A., Rodionov, A. N., Boev, V. I. Russ. Chem. Bull. 2014, 63, 26–36; https://doi.org/10.1007/s11172-014-0390-4.Search in Google Scholar

12. Mokfi, M., Rust, J., Lehmann, C. W., Mohr, F. Molecules 2021, 26, 3705; https://doi.org/10.3390/molecules26123705.Search in Google Scholar PubMed PubMed Central

13. Schuh, E., Pflüger, C., Citta, A., Folda, A., Rigobello, M. P., Bindoli, A., Casini, A., Mohr, F. J. Med. Chem. 2012, 55, 5518–5528; https://doi.org/10.1021/jm300428v.Search in Google Scholar PubMed

14. Lednicer, D., Hauser, C. R. Org. Synth. 1960, 40, 31.10.15227/orgsyn.040.0031Search in Google Scholar

15. CrysAlisPro 41.123a (version 40.53); Rigaku Oxford Diffraction Ltd.: Oxford (U.K.), 2022.10.1016/j.mpsur.2021.11.007Search in Google Scholar

16. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

17. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

18. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

19. Hiroshi, M., Takaji, F., Ken-Ichi, T. Bull. Chem. Soc. Jpn. 1969, 42, 3099–3105.Search in Google Scholar

20. Majodina, S., Ndima, L., Abosede, O. O., Hosten, E. C., Lorentino, C. M. A., Frota, H. F., Sangenito, L. S., Branquinha, M. H., Santos, A. L. S., Ogunlaja, A. S. CrystEngComm 2021, 23, 335–352; https://doi.org/10.1039/d0ce01387k.Search in Google Scholar

21. Nugrahani, I., Pertiwi, E. A., Putra, O. D. Int. J. Pharm. Pharmaceut. Sci. 2015, 7, 15–24.Search in Google Scholar

22. Bildstein, B., Malaun, M., Kopacka, H., Ongania, K.-H., Wurst, K. J. Organomet. Chem. 1998, 552, 45–61; https://doi.org/10.1016/s0022-328x(97)00464-6.Search in Google Scholar

23. Zhuo, J. B., Zhu, X. X., Lin, C. X., Bai, S., Xie, L. L., Yuan, Y. F. J. Organomet. Chem. 2014, 770, 85–93; https://doi.org/10.1016/j.jorganchem.2014.08.011.Search in Google Scholar

24. Ndlovu, S. N. P., Ibrahim, H., Bala, M. D. J. Heterocycl. Chem. 2017, 54, 3646–3655; https://doi.org/10.1002/jhet.2992.Search in Google Scholar

Received: 2022-10-28
Accepted: 2022-11-04
Published Online: 2023-03-08
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Professor Dr. Gerhard Müller. Editor-in-Chief der Zeitschrift für Naturforschung BChemical Sciences. zum 70. Geburtstag
  5. Research Articles
  6. Ferrocenylmethylation of theophylline
  7. Electron density of a cyclic tetrasaccharide composed of benzoylated galactose units
  8. Orthoamide und Iminiumsalze, CIX. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit Diolen, Ethandithiol und CH-aciden Nitroverbindungen
  9. 1,4-Divinylphenylene-bridged diruthenium complexes with 2-hydroxypyridine- and 2- or 8-hydroxyquinoline-olate ligands
  10. The calcium oxidotellurates Ca2(TeIVTeVIO7), Ca2(TeIVO3)Cl2 and Ca5(TeIVO3)4Cl2 obtained from salt melts
  11. N-heterocyclic carbene-mediated oxidation of copper(I) in an imidazolium ionic liquid
  12. Synthesis, crystal structure, thermal and spectroscopic properties of ZnX2-2-methylpyrazine (X = Cl, Br, I) coordination compounds
  13. Solid-state molecular structures of Se(IV) and Te(IV) dihalides X2Se(CH3)(C6F5) and the gas-phase structure of Se(CH3)(C6F5)
  14. Ein neuartiger T-förmiger 14-Elektronen-Iridium(I)-Komplex stabilisiert durch eine agostische Ir–H-Wechselwirkung
  15. Exploring dicyanamides with two different alkali-metal cations: phase separations, solid solutions and the new compound Rb1.667Cs0.333[N(CN)2]2
  16. Eu4Al13Pt9 – a coloring variant of the Ho4Ir13Ge9 type structure
  17. Decoration of the [Nb6O19]8– cluster shell with six Cu2+-centred complexes generates the [(Cu(cyclen))6Nb6O19]4+ moiety: room temperature synthesis, crystal structure and selected properties
  18. Structure and spectroscopic properties of etherates of the beryllium halides
  19. The palladium-rich silicides RE3Pd20Si6 (RE = Sc, Y and Lu)
  20. Azido and desamino analogs of the marine natural product oroidin
  21. High-pressure high-temperature preparation of CeGe3
  22. On the synthesis and crystal structure of praseodymium(III) metaborate molybdate(VI) – PrBO2MoO4
  23. A third polymorph of the zwitterionic complex trichlorido-((dimethylphosphoryl)methanaminium-κO)zinc(II)
  24. Mechanochemical synthesis and structural evaluation of a metastable polymorph of Ti3Sn
  25. Synthesis and application of calcium silicate hydrate (C-S-H) nanoparticles for early strength enhancement by eco-friendly low carbon binders
  26. Sterically crowded di-indazolyl-pyridines: Iron(II) complexation studies
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0300/html
Scroll to top button