Dendritic Cells for Specific Cancer Immunotherapy
-
Norbert Meidenbauer
Abstract
The characterization of tumorassociated antigens recognized by human T lymphocytes in a major histocompatibility complex (MHC)restricted fashion has opened new possibilities for immunotherapeutic approaches to the treatment of human cancers. Dendritic cells (DC) are professional antigen presenting cells that are well suited to activate T cells toward various antigens, such as tumorassociated antigens, due to their potent costimulatory activity. The availability of large numbers of DC, generated either from hematopoietic progenitor cells or monocytes in vitro or isolated from peripheral blood, has profoundly changed preclinical research as well as the clinical evaluation of these cells. Accordingly, appropriately pulsed or transfected DC may be used for vaccination in the field of infectious diseases or tumor immunotherapy to induce antigenspecific T cell responses. These observations led to pilot clinical trials of DC vaccination for patients with cancer in order to investigate the feasibility, safety, as well as the immunologic and clinical effects of this approach. Initial clinical studies of human DC vaccines are generating encouraging preliminary results demonstrating induction of tumorspecific immune responses and tumor regression. Nevertheless, much work is still needed to address several variables that are critical for optimizing this approach and to determine the role of DCbased vaccines in tumor immunotherapy.
Copyright © 2001 by Walter de Gruyter GmbH & Co. KG
Articles in the same Issue
- Vaccine Development: from Empirical Medicine to Molecularly Designed Therapy
- Dendritic Cells for Specific Cancer Immunotherapy
- Intracellular Bacteria as Targets and Carriers for Vaccination
- Bacteria-Mediated Transfer of Eukaryotic Expression Plasmids into Mammalian Host Cells
- Revealing the Potential of DNA-Based Vaccination: Lessons Learned from the Hepatitis B Virus Surface Antigen
- Progress toward a Malaria Vaccine: Efficient Induction of Protective Anti-Malaria Immunity
- Peptide Vaccines and Peptide Libraries
- Defined Synthetic Vaccines
- Antimicrobial Peptides: Properties and Applicability
- G-Quadruplex DNA Structures Variations on a Theme
- The Role of Heat Shock Proteins and Their Receptors in the Activation of the Immune System
- Transcriptional Repression Mediated by the KRAB Domain of the Human C2H2 Zinc Finger Protein Kox1/ZNF10 Does Not Require Histone Deacetylation
- Structure and Evolution of 4-Coumarate:Coenzyme A Ligase (4CL) Gene Families
- Inhibition of Hepatitis B Virus by Hammerhead Ribozyme Targeted to the Poly(A) Signal Sequence in Cultured Cells
- Chemical Accessibility of 18S rRNA in Native Ribosomal Complexes: Interaction Sites of mRNA, tRNA and Translation Factors
- C-Terminal Peptides of Interleukin-6 Modulate the Expression of junB Protooncogene and the Production of Fibrinogen by HepG2 Cells
- Proteome Analysis by Three-Dimensional Protein Separation: Turnover of Cytosolic Proteins in Hepatocytes
- Structural Intermediates in the Putative Pathway from the Cellular Prion Protein to the Pathogenic Form
- Local Variability of the Phosphoglycerate Kinase-Triosephosphate Isomerase Fusion Protein from Thermotoga maritima MSB 8
- Epigenetics of Latent Epstein-Barr Virus Genomes: High Resolution Methylation Analysis of the Bidirectional Promoter Region of Latent Membrane Protein 1 and 2B Genes
- The Cytosine N4-Methyltransferase M.PvuII Also Modifies Adenine Residues
- Expression of the Human Menkes ATPase in Xenopus laevis Oocytes
Articles in the same Issue
- Vaccine Development: from Empirical Medicine to Molecularly Designed Therapy
- Dendritic Cells for Specific Cancer Immunotherapy
- Intracellular Bacteria as Targets and Carriers for Vaccination
- Bacteria-Mediated Transfer of Eukaryotic Expression Plasmids into Mammalian Host Cells
- Revealing the Potential of DNA-Based Vaccination: Lessons Learned from the Hepatitis B Virus Surface Antigen
- Progress toward a Malaria Vaccine: Efficient Induction of Protective Anti-Malaria Immunity
- Peptide Vaccines and Peptide Libraries
- Defined Synthetic Vaccines
- Antimicrobial Peptides: Properties and Applicability
- G-Quadruplex DNA Structures Variations on a Theme
- The Role of Heat Shock Proteins and Their Receptors in the Activation of the Immune System
- Transcriptional Repression Mediated by the KRAB Domain of the Human C2H2 Zinc Finger Protein Kox1/ZNF10 Does Not Require Histone Deacetylation
- Structure and Evolution of 4-Coumarate:Coenzyme A Ligase (4CL) Gene Families
- Inhibition of Hepatitis B Virus by Hammerhead Ribozyme Targeted to the Poly(A) Signal Sequence in Cultured Cells
- Chemical Accessibility of 18S rRNA in Native Ribosomal Complexes: Interaction Sites of mRNA, tRNA and Translation Factors
- C-Terminal Peptides of Interleukin-6 Modulate the Expression of junB Protooncogene and the Production of Fibrinogen by HepG2 Cells
- Proteome Analysis by Three-Dimensional Protein Separation: Turnover of Cytosolic Proteins in Hepatocytes
- Structural Intermediates in the Putative Pathway from the Cellular Prion Protein to the Pathogenic Form
- Local Variability of the Phosphoglycerate Kinase-Triosephosphate Isomerase Fusion Protein from Thermotoga maritima MSB 8
- Epigenetics of Latent Epstein-Barr Virus Genomes: High Resolution Methylation Analysis of the Bidirectional Promoter Region of Latent Membrane Protein 1 and 2B Genes
- The Cytosine N4-Methyltransferase M.PvuII Also Modifies Adenine Residues
- Expression of the Human Menkes ATPase in Xenopus laevis Oocytes