Home Life Sciences Intracellular Bacteria as Targets and Carriers for Vaccination
Article
Licensed
Unlicensed Requires Authentication

Intracellular Bacteria as Targets and Carriers for Vaccination

  • Hans Mollenkopf , Guido Dietrich and Stefan H. E. Kaufmann
Published/Copyright: June 1, 2005
Biological Chemistry
From the journal Volume 382 Issue 4

Abstract

In this review we discuss intracellular bacteria as targets and carriers for vaccines. For clarity and ease of comprehension, we focus on three microbes, Mycobacterium tuberculosis, Listeria monocytogenes and Salmonella, with an emphasis on tuberculosis, one of the leading causes of death from infectious disease. Novel vaccination strategies against these pathogens are currently being considered. One approach favors the use of live attenuated vaccines and vaccine carrier strains thereof, either for heterologous antigen presentation or DNA vaccine delivery. This strategy includes both the improvement of attenuated vaccine strains as well as the de novo generation of attenuated variants of virulent pathogens. An alternative strategy relies on the application of subunit immunizations, either as nucleic acid vaccines or protein antigens of the pathogen. Finally, we present a short summary of the vaccination strategies against tuberculosis.

:
Published Online: 2005-06-01
Published in Print: 2001-04-27

Copyright © 2001 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. Vaccine Development: from Empirical Medicine to Molecularly Designed Therapy
  2. Dendritic Cells for Specific Cancer Immunotherapy
  3. Intracellular Bacteria as Targets and Carriers for Vaccination
  4. Bacteria-Mediated Transfer of Eukaryotic Expression Plasmids into Mammalian Host Cells
  5. Revealing the Potential of DNA-Based Vaccination: Lessons Learned from the Hepatitis B Virus Surface Antigen
  6. Progress toward a Malaria Vaccine: Efficient Induction of Protective Anti-Malaria Immunity
  7. Peptide Vaccines and Peptide Libraries
  8. Defined Synthetic Vaccines
  9. Antimicrobial Peptides: Properties and Applicability
  10. G-Quadruplex DNA Structures Variations on a Theme
  11. The Role of Heat Shock Proteins and Their Receptors in the Activation of the Immune System
  12. Transcriptional Repression Mediated by the KRAB Domain of the Human C2H2 Zinc Finger Protein Kox1/ZNF10 Does Not Require Histone Deacetylation
  13. Structure and Evolution of 4-Coumarate:Coenzyme A Ligase (4CL) Gene Families
  14. Inhibition of Hepatitis B Virus by Hammerhead Ribozyme Targeted to the Poly(A) Signal Sequence in Cultured Cells
  15. Chemical Accessibility of 18S rRNA in Native Ribosomal Complexes: Interaction Sites of mRNA, tRNA and Translation Factors
  16. C-Terminal Peptides of Interleukin-6 Modulate the Expression of junB Protooncogene and the Production of Fibrinogen by HepG2 Cells
  17. Proteome Analysis by Three-Dimensional Protein Separation: Turnover of Cytosolic Proteins in Hepatocytes
  18. Structural Intermediates in the Putative Pathway from the Cellular Prion Protein to the Pathogenic Form
  19. Local Variability of the Phosphoglycerate Kinase-Triosephosphate Isomerase Fusion Protein from Thermotoga maritima MSB 8
  20. Epigenetics of Latent Epstein-Barr Virus Genomes: High Resolution Methylation Analysis of the Bidirectional Promoter Region of Latent Membrane Protein 1 and 2B Genes
  21. The Cytosine N4-Methyltransferase M.PvuII Also Modifies Adenine Residues
  22. Expression of the Human Menkes ATPase in Xenopus laevis Oocytes
Downloaded on 9.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2001.066/html
Scroll to top button