Home Bacteria-Mediated Transfer of Eukaryotic Expression Plasmids into Mammalian Host Cells
Article
Licensed
Unlicensed Requires Authentication

Bacteria-Mediated Transfer of Eukaryotic Expression Plasmids into Mammalian Host Cells

  • Siegfried Weiss and Stefan Krusch
Published/Copyright: June 1, 2005
Biological Chemistry
From the journal Volume 382 Issue 4

Abstract

Invasive intracellular bacteria are able to transfer eukaryotic expression plasmids into mammalian host cells in vitro and in vivo. This can be used to induce immune responses toward protein antigens encoded by the plasmid or to complement genetic defects. Plasmid transfer takes place when the recombinant bacterium dies within the host cell, either due to metabolic attenuation or induction of autolysis. Alternatively, antibiotics can be used and spontaneous transfer has also been observed, indicating that this phenomenon might also occur under physiological conditions. Plasmid transfer has been reported for Shigella flexneri, Salmonella typhimurium and S. typhi, Listeria monocytogenes and recombinant Escherichia coli, but other invasive bacteria should also share this property. In vivo attempts were mainly directed toward vaccination using shigella and salmonella as carrier. So far a wide variety of antigens have been used succesfully in mice. Often this type of immunization was superior over direct application of antigen or using the same bacterium as a heterologous carrier expressing the antigen via a prokaryotic promoter. Characterization of the host cells revealed that macrophages and dendritic cells might be responsible for immune stimulation by either expressing the antigen or crosspresenting the antigen after uptake of apoptotic antigen expressing cells.

:
Published Online: 2005-06-01
Published in Print: 2001-04-27

Copyright © 2001 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. Vaccine Development: from Empirical Medicine to Molecularly Designed Therapy
  2. Dendritic Cells for Specific Cancer Immunotherapy
  3. Intracellular Bacteria as Targets and Carriers for Vaccination
  4. Bacteria-Mediated Transfer of Eukaryotic Expression Plasmids into Mammalian Host Cells
  5. Revealing the Potential of DNA-Based Vaccination: Lessons Learned from the Hepatitis B Virus Surface Antigen
  6. Progress toward a Malaria Vaccine: Efficient Induction of Protective Anti-Malaria Immunity
  7. Peptide Vaccines and Peptide Libraries
  8. Defined Synthetic Vaccines
  9. Antimicrobial Peptides: Properties and Applicability
  10. G-Quadruplex DNA Structures Variations on a Theme
  11. The Role of Heat Shock Proteins and Their Receptors in the Activation of the Immune System
  12. Transcriptional Repression Mediated by the KRAB Domain of the Human C2H2 Zinc Finger Protein Kox1/ZNF10 Does Not Require Histone Deacetylation
  13. Structure and Evolution of 4-Coumarate:Coenzyme A Ligase (4CL) Gene Families
  14. Inhibition of Hepatitis B Virus by Hammerhead Ribozyme Targeted to the Poly(A) Signal Sequence in Cultured Cells
  15. Chemical Accessibility of 18S rRNA in Native Ribosomal Complexes: Interaction Sites of mRNA, tRNA and Translation Factors
  16. C-Terminal Peptides of Interleukin-6 Modulate the Expression of junB Protooncogene and the Production of Fibrinogen by HepG2 Cells
  17. Proteome Analysis by Three-Dimensional Protein Separation: Turnover of Cytosolic Proteins in Hepatocytes
  18. Structural Intermediates in the Putative Pathway from the Cellular Prion Protein to the Pathogenic Form
  19. Local Variability of the Phosphoglycerate Kinase-Triosephosphate Isomerase Fusion Protein from Thermotoga maritima MSB 8
  20. Epigenetics of Latent Epstein-Barr Virus Genomes: High Resolution Methylation Analysis of the Bidirectional Promoter Region of Latent Membrane Protein 1 and 2B Genes
  21. The Cytosine N4-Methyltransferase M.PvuII Also Modifies Adenine Residues
  22. Expression of the Human Menkes ATPase in Xenopus laevis Oocytes
Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2001.067/html
Scroll to top button