Home Epigenetics of Latent Epstein-Barr Virus Genomes: High Resolution Methylation Analysis of the Bidirectional Promoter Region of Latent Membrane Protein 1 and 2B Genes
Article
Licensed
Unlicensed Requires Authentication

Epigenetics of Latent Epstein-Barr Virus Genomes: High Resolution Methylation Analysis of the Bidirectional Promoter Region of Latent Membrane Protein 1 and 2B Genes

  • Maria Takacs , Daniel Salamon , Sanna Myöhänen , Hui Li , Judit Segesdi , Dorina Ujvari , Joerg Uhlig , Hans-Helmut Niller , Hans Wolf , George Berencsi and Janos Minarovits
Published/Copyright: June 1, 2005
Biological Chemistry
From the journal Volume 382 Issue 4

Abstract

We analysed the methylation patterns of CpG dinucleotides in a bidirectional promoter region (LRS, LMP 1 regulatory sequences) of latent EpsteinBarr virus (EBV) genomes using automated fluorescent genomic sequencing after bisulfiteinduced modification of DNA. Transcripts for two latent membrane proteins, LMP 1 (a transforming protein) and LMP 2B, are initiated in this region in opposite directions. We found that B cell lines and a clone expressing LMP 1 carried EBV genomes with unmethylated or hypomethylated LRS, while highly methylated CpG dinucleotides were present at each position or at discrete sites and within hypermethylated regions in LMP 1 negative cells. Comparison of high resolution methylation maps suggests that CpG methylationmediated direct interference with binding of nuclear factors LBF 2, 3, 7, AML1/LBF1, LBF5 and LBF6 or methylation of CpGs within an Ebox sequence (where activators as well as repressors can bind) is not the major mechanism in silencing of the LMP 1 promoter. Although a role for CpG methylation within binding sites of Sp1 and 3, ATF/CRE and a sisinducible factor (SIF) cannot be excluded, hypermethylation of LRS or regions within LRS in LMP 1 negative cells suggests a role for an indirect mechanism, via methylcytosine binding proteins, in silencing of the LMP 1 promoter.

:
Published Online: 2005-06-01
Published in Print: 2001-04-27

Copyright © 2001 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. Vaccine Development: from Empirical Medicine to Molecularly Designed Therapy
  2. Dendritic Cells for Specific Cancer Immunotherapy
  3. Intracellular Bacteria as Targets and Carriers for Vaccination
  4. Bacteria-Mediated Transfer of Eukaryotic Expression Plasmids into Mammalian Host Cells
  5. Revealing the Potential of DNA-Based Vaccination: Lessons Learned from the Hepatitis B Virus Surface Antigen
  6. Progress toward a Malaria Vaccine: Efficient Induction of Protective Anti-Malaria Immunity
  7. Peptide Vaccines and Peptide Libraries
  8. Defined Synthetic Vaccines
  9. Antimicrobial Peptides: Properties and Applicability
  10. G-Quadruplex DNA Structures Variations on a Theme
  11. The Role of Heat Shock Proteins and Their Receptors in the Activation of the Immune System
  12. Transcriptional Repression Mediated by the KRAB Domain of the Human C2H2 Zinc Finger Protein Kox1/ZNF10 Does Not Require Histone Deacetylation
  13. Structure and Evolution of 4-Coumarate:Coenzyme A Ligase (4CL) Gene Families
  14. Inhibition of Hepatitis B Virus by Hammerhead Ribozyme Targeted to the Poly(A) Signal Sequence in Cultured Cells
  15. Chemical Accessibility of 18S rRNA in Native Ribosomal Complexes: Interaction Sites of mRNA, tRNA and Translation Factors
  16. C-Terminal Peptides of Interleukin-6 Modulate the Expression of junB Protooncogene and the Production of Fibrinogen by HepG2 Cells
  17. Proteome Analysis by Three-Dimensional Protein Separation: Turnover of Cytosolic Proteins in Hepatocytes
  18. Structural Intermediates in the Putative Pathway from the Cellular Prion Protein to the Pathogenic Form
  19. Local Variability of the Phosphoglycerate Kinase-Triosephosphate Isomerase Fusion Protein from Thermotoga maritima MSB 8
  20. Epigenetics of Latent Epstein-Barr Virus Genomes: High Resolution Methylation Analysis of the Bidirectional Promoter Region of Latent Membrane Protein 1 and 2B Genes
  21. The Cytosine N4-Methyltransferase M.PvuII Also Modifies Adenine Residues
  22. Expression of the Human Menkes ATPase in Xenopus laevis Oocytes
Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2001.083/html
Scroll to top button