Home Peptide Vaccines and Peptide Libraries
Article
Licensed
Unlicensed Requires Authentication

Peptide Vaccines and Peptide Libraries

  • Karl-Heinz Wiesmüller , Burkhard Fleckenstein and Günther Jung
Published/Copyright: June 1, 2005
Biological Chemistry
From the journal Volume 382 Issue 4

Abstract

Synthetic immunogens, containing builtin adjuvanticity, B cell, T helper cell and CTL epitopes or mimotopes, are ideal and invaluable tools to study the immune response with respect to antigen processing and presentation. This serves as a basis for the development of complete and minimal vaccines which not need large carrier proteins, further adjuvants, liposome formulations or other delivery systems. Combinatorial peptide libraries, either completely random or characterized by one or several defined positions, are useful tools for the identification of the critical features of B cell epitopes and MHC class I and class II binding natural and synthetic epitopes. The complete activity pattern of O/X library with hundreds of peptide collections, each made up from billions of different peptides, represents the ranking of amino acid residues mediating contact to the target proteins of the immune system. Combinatorial libraries support the design of peptides applicable in vaccination against infectious agents as well as therapeutic tumour vaccines. Using the principle of lipopeptide vaccines, strong humoral and cellular immune responses could elicited. The lipopeptide vaccines are heatstable, nontoxic, fully biodegradable and can be prepared on the basis of minimized epitopes by modern methods of multiple peptide synthesis. The lipopeptides activate the antigenpresenting macrophages and cells and have been recently shown to stimulate innate immunity by specific interaction with receptors of the Toll family.

:
Published Online: 2005-06-01
Published in Print: 2001-04-27

Copyright © 2001 by Walter de Gruyter GmbH & Co. KG

Articles in the same Issue

  1. Vaccine Development: from Empirical Medicine to Molecularly Designed Therapy
  2. Dendritic Cells for Specific Cancer Immunotherapy
  3. Intracellular Bacteria as Targets and Carriers for Vaccination
  4. Bacteria-Mediated Transfer of Eukaryotic Expression Plasmids into Mammalian Host Cells
  5. Revealing the Potential of DNA-Based Vaccination: Lessons Learned from the Hepatitis B Virus Surface Antigen
  6. Progress toward a Malaria Vaccine: Efficient Induction of Protective Anti-Malaria Immunity
  7. Peptide Vaccines and Peptide Libraries
  8. Defined Synthetic Vaccines
  9. Antimicrobial Peptides: Properties and Applicability
  10. G-Quadruplex DNA Structures Variations on a Theme
  11. The Role of Heat Shock Proteins and Their Receptors in the Activation of the Immune System
  12. Transcriptional Repression Mediated by the KRAB Domain of the Human C2H2 Zinc Finger Protein Kox1/ZNF10 Does Not Require Histone Deacetylation
  13. Structure and Evolution of 4-Coumarate:Coenzyme A Ligase (4CL) Gene Families
  14. Inhibition of Hepatitis B Virus by Hammerhead Ribozyme Targeted to the Poly(A) Signal Sequence in Cultured Cells
  15. Chemical Accessibility of 18S rRNA in Native Ribosomal Complexes: Interaction Sites of mRNA, tRNA and Translation Factors
  16. C-Terminal Peptides of Interleukin-6 Modulate the Expression of junB Protooncogene and the Production of Fibrinogen by HepG2 Cells
  17. Proteome Analysis by Three-Dimensional Protein Separation: Turnover of Cytosolic Proteins in Hepatocytes
  18. Structural Intermediates in the Putative Pathway from the Cellular Prion Protein to the Pathogenic Form
  19. Local Variability of the Phosphoglycerate Kinase-Triosephosphate Isomerase Fusion Protein from Thermotoga maritima MSB 8
  20. Epigenetics of Latent Epstein-Barr Virus Genomes: High Resolution Methylation Analysis of the Bidirectional Promoter Region of Latent Membrane Protein 1 and 2B Genes
  21. The Cytosine N4-Methyltransferase M.PvuII Also Modifies Adenine Residues
  22. Expression of the Human Menkes ATPase in Xenopus laevis Oocytes
Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/BC.2001.070/html
Scroll to top button