Startseite Constitutive modelling of mill loads during hot rolling of AISI 321 austenitic stainless steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Constitutive modelling of mill loads during hot rolling of AISI 321 austenitic stainless steel

  • Richard K. C. Nkhoma , Charles W. Siyasiya und Waldo E. Stumpf
Veröffentlicht/Copyright: 15. September 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A modelled constitutive equation derived from hot working tests to predict hot rolling mill loads is proposed and validated against industrial hot rolling data for AISI 321 stainless steel. Good correlation is found between the predicted mean flow stress, the Zener–Hollomon Z parameter and actual industrial mill load values from mill logs if allowances are made for differences in von Mises plane strain conversion, friction and front or back end tension. The multipass hot working behaviour of this steel was simulated through Gleeble thermomechanical compression testing with the deformation temperature varying between 1200°C down to 800°C and the strain rate between 0.001 s−1 and 5 s−1. At strain rates greater than 0.05 s−1, dynamic recovery as a softening mechanism was dominant, increasing the dynamic recrystallisation to dynamic recovery transition temperature to higher temperatures. This implies that through extrapolation to typical industrial strain rates of about 60 s−1, most likely no dynamic recrystallisation in plant hot rolling occurs in this steel but only dynamic recovery. Grain refinement by dynamic recrystallisation is, therefore, unlikely in this steel under plant hot rolling conditions. Finally, mill load modelling using the hot working constitutive constants of the near-equivalent AISI 304 instead of those specifically determined for AISI 321, introduces measurable differences in the predicted mill loads. The use of alloy-specific hot working constants even for near-equivalent steels is, therefore, recommended.


* Correspondence address, Dr. Richard Nkhoma, University of Pretoria, Department of Materials Science and Metallurgical Engineering, 0002 Pretoria, South Africa, Mobile: +27(0)837370072, Fax: +27(0)865022575, E-mail:

References

[1] R.K.C.Nkhoma, C.W.Siyasiya, W.E.Stumpf: J. Alloys Compd. 595 (2014) 103. 10.1016/j.jallcom.2014.01.157Suche in Google Scholar

[2] R.D.Doherty, D.A.Hughes, F.J.Humphreys, J.J.Jonas, D.J.Jensen, M.E.Kassner, W.E.King, T.R.Mcnelley, H.J.McQueen, A.D.Rollett: Mater. Sci. Eng. A238 (1997) 219. 10.1016/S0921-5093(97)00424-3Suche in Google Scholar

[3] G.E.Totten: Steel Heat Treatment Metallurgy and Technologies, Tailor & Francis Group, (2007).Suche in Google Scholar

[4] J.Beddoes, J.G.Parr: Introduction to Stainless Steels, 3rd Ed., ASM Int. (1999).Suche in Google Scholar

[5] A.Dimatteo, M.Vannucci, V.Colla: Int. J. Adv. Manuf. Technol. 66 (2013) 1511. 10.1007/s00170-012-4435-2Suche in Google Scholar

[6] F.Siciliano, L.L.Leduc, K.Hensger, in: Proc. Inter. HSLA3 (2005) 1.Suche in Google Scholar

[7] W.Stumpf: J. S. Afr. Inst. Min. Metall. 103 (2003) 617.Suche in Google Scholar

[8] W.Stumpf: S. Afr. J. Sci. 102 (2006) 565.Suche in Google Scholar

[9] G.E.Dieter, H.A.Kuhn, S.L.Semiatin: Handbook of Workability and Process Design, ASM Int. (2003) 48, 63.Suche in Google Scholar

[10] N.D.Ryan, H.J.McQueen: Can. Metall. Q. 29 (1990) 147. 10.1179/000844390795576058Suche in Google Scholar

[11] D.Koshal: Manufacturing Engineer's Reference Book, Butterworth-Heinemann, Oxford (1993).Suche in Google Scholar

[12] J.L.Uvira: Hot Compression of ARMCO Iron and Silicon Steel, McGill University, (1969).Suche in Google Scholar

[13] S.-I.Kim, Y.-C.Yoo: Mater. Sci. Eng. A311 (2001) 108. 10.1016/S0921-5093(01)00917-0Suche in Google Scholar

[14] S.Cho, Y.Yoo: J. Mater. Sci. 36 (2001) 4267. 10.1023/A:1017949812425Suche in Google Scholar

[15] ASM Int. Handbook Committee: Vol. 1. Properties and Selection: Irons, Steels, and High Performance Alloys Section, ASM Int. (2005).Suche in Google Scholar

[16] http://www.sms-siemag.com/download/W4_309_E_Steckel_Mills_save.pdf.Suche in Google Scholar

[17] F.J.Humphreys: J. Mater. Sci. 36 (2001) 3833. 10.1023/A:1017973432592Suche in Google Scholar

[18] M.El Wahabi, J.M.Cabrera, J.M.Prado: Mater. Sci. Eng. A343 (2003) 116. 10.1016/S0921-5093(02)00357-XSuche in Google Scholar

[19] W.Liu: Precipitation of TiCN in austenite experimental results analysis and modelling, McGill University (1987).Suche in Google Scholar

[20] F.J.Humphries: Recrystallisation and Related Annealing Phenomena, 2nd Ed., Elsevier (2004). 10.1016/B978-008044164-1/50002-5Suche in Google Scholar

[21] R.B.Sims, in: Proc. Inst. Mech. Eng. 168 (1954) 191. 10.1243/PIME_PROC_1954_168_023_02Suche in Google Scholar

[22] W.F.Hosford, R.M.Caddell: Metal Forming, 3rd Ed., Cambridge University Press (2007). 10.1017/CBO9780511811111Suche in Google Scholar

[23] F.Siciliano: Mathematical Modeling of the Hot Strip Rolling of Nb Microalloyed Steels, McGill University (1999).Suche in Google Scholar

[24] F.J.Siciliano, K.Minami, T.M.Maccagno, J.J.Jonas: ISIJ Int. 36 (1996) 1500. 10.2355/isijinternational.36.1500Suche in Google Scholar

Received: 2014-02-15
Accepted: 2014-04-03
Published Online: 2014-09-15
Published in Print: 2014-09-15

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111093/html
Button zum nach oben scrollen