Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys
-
Eung-Beom Lee
Abstract
In order to study the effect of Mo on the microstructure, mechanical properties and corrosion behavior of commercially pure titanium (cp-Ti), Ti-xMo (x = 5, 10, 15, and 20 wt.%) alloys were investigated. The phase and microstructures were characterized using X-ray diffraction, optical microscopy, scanning electron microscopy and transmission electron microscopy. The results indicated that the Ti-5Mo alloy was mainly composed of α′ phase with a small fraction of α″ phase. The Ti-10Mo was dominated by orthorhombic α″. The Ti-15Mo alloy was mainly composed of α″ phase with a small fraction of β phase. The volume percentage of the β phase increased with increasing Mo content. The Ti-20Mo alloy was mainly composed of β phase. We also investigated the effect of alloying with Mo on the Vickers hardness and corrosion behavior of Ti-xMo alloys. The addition of Mo not only caused hardening of cp-Ti but also improved its oxidation protective ability. Electrochemical results showed that the Ti-xMo alloys exhibited improved corrosion resistance over cp-Ti.
References
[1] C.Leyens, M.Peters: Titanium and titanium alloys, Wiley-VCH, Weinheim (2003). 10.1002/3527602119Search in Google Scholar
[2] C.Lloyd, S.Scrimgeour, D.Brown, R.Clarke, R.Curtis, P.Hatton, A.Ireland, J.McCabe, J.Nicholson, J.Setcos: J. Dent. 25 (1997) 173. 10.1016/S0300-5712(96)00077-2Search in Google Scholar
[3] E.Ezugwu, Z.Wang: J. Mater. Process. Technol. 68 (1997) 262. 10.1016/S0924-0136(96)00030-1Search in Google Scholar
[4] M.Niinomi: Mater. Sci. Eng. A243 (1998) 231. 10.1016/S0921-5093(97)00806-XSearch in Google Scholar
[5] P.Rocher, L.El Medawar, J.Hornez, M.Traisnel, J.Breme, H.Hildebrand: Eur. Cells Mater. 9 (2005) 23.10.22203/eCM.v009a04Search in Google Scholar PubMed
[6] E.Eisenbarth, D.Velten, M.Müller, R.Thull, J.Breme: Biomaterials25 (2004) 5705. 10.1016/j.biomaterials.2004.01.021Search in Google Scholar PubMed
[7] A.Cremasco, A.D.Messias, A.R.Esposito, E.A.R.Duek, R.Caram: Mater. Sci. Eng. C31 (2011) 833. 10.1016/j.msec.2010.12.013Search in Google Scholar
[8] J.A.Davidson, A.K.Mishra, P.Kovacs, R.A.Poggie: Bio-Med. Mater. Eng. 4 (1994) 231. 10.3233/BME-1994-4310Search in Google Scholar
[9] M.A.Khan, R.L.Williams, D.F.Williams: Biomaterials20 (1999) 631. 10.1016/S0142-9612(98)00217-8Search in Google Scholar
[10] M.F.Semlitsch, H.Weber, R.M.Streicher, R.Schön: Biomaterials13 (1992) 781. 10.1016/0142-9612(92)90018-JSearch in Google Scholar
[11] H.Tsuchiya, J.M.Macak, A.Ghicov, Y.C.Tang, S.Fujimoto, M.Niinomi, T.Noda, P.Schmuki: Electrochim. Acta52 (2006) 94. 10.1016/j.electacta.2006.03.087Search in Google Scholar
[12] M.Geetha, A.K.Singh, R.Asokamani, A.K.Gogia: Prog. Mater Sci. 54 (2009) 397. 10.1016/j.pmatsci.2008.06.004Search in Google Scholar
[13] K.Rajagopalan: Annu. Rev. Nutr. 8 (1988) 401. 10.1146/annurev.nu.08.070188.002153Search in Google Scholar PubMed
[14] B.K.Burgess: Chem. Rev. 90 (1990) 1377. 10.1021/cr00106a002Search in Google Scholar
[15] N.Oliveira, A.Guastaldi: Corros. Sci. 50 (2008) 938. 10.1016/j.corsci.2007.09.009Search in Google Scholar
[16] D.Gordin, T.Gloriant, G.Texier, I.Thibon, D.Ansel, J.Duval, M.Nagel: J. Mater. Sci. Mater. Med. 15 (2004) 885. 10.1023/B:JMSM.0000036276.32211.31Search in Google Scholar PubMed
[17] C.Li, Y.Zhan, W.Jiang: Mater. Des. 34 (2012) 479. 10.1016/j.matdes.2011.05.031Search in Google Scholar
[18] S.Nag, R.Banerjee, H.Fraser: Mater. Sci. Eng. C25 (2005) 357. 10.1016/j.msec.2004.12.013Search in Google Scholar
[19] W. F.Ho: J. Alloys Compd. 464 (2008) 580. 10.1016/j.jallcom.2007.10.054Search in Google Scholar
[20] M.Sugano, Y.Tsuchida, T.Satake, M.Ikeda: Mater. Sci. Eng. A243 (1998) 163. 10.1016/S0921-5093(97)00795-8Search in Google Scholar
[21] S.Kumar, T. SankaraNarayanan: J. Alloys Compd. 479 (2009) 699. 10.1016/j.jallcom.2009.01.036Search in Google Scholar
[22] D.-J.Lin, C.-C.Chuang, J.-H. ChernLin, J.-W.Lee, C.-P.Ju, H.-S.Yin: Biomaterials28 (2007) 2582. 10.1016/j.biomaterials.2007.02.005Search in Google Scholar PubMed
[23] Y.-Y.Chen, L.-J.Xu, Z.-G.Liu, F.-T.Kong, Z.-Y.Chen: Trans. Nonferrous Met. Soc. 16 (2006) 824. 10.1016/S1003-6326(06)60308-7Search in Google Scholar
[24] Y.-L.Zhou, D.-M.Luo: Mater. Charact. 62 (2011) 931. 10.1016/j.matchar.2011.07.010Search in Google Scholar
[25] D.Mareci, R.Chelariu, I.Dan, D.-M.Gordin, T.Gloriant: J. Mater. Sci. Mater. Med. 21 (2010) 2907. 10.1007/s10856-010-4147-9Search in Google Scholar PubMed
[26] J.L.Murray: Phase diagrams of binary titanium alloys, ASM International, OH (1987). 10.1007/BF02868887Search in Google Scholar
[27] W.Ho, C.Ju, J. ChernLin: Biomaterials20 (1999) 2115. 10.1016/S0142-9612(99)00114-3Search in Google Scholar PubMed
[28] N.T.Oliveira, G.Aleixo, R.Caram, A.C.Guastaldi: Mater. Sci. Eng. A452 (2007) 727. 10.1016/j.msea.2006.11.061Search in Google Scholar
[29] A.Aladjem: J. Mater. Sci. 8 (1973) 688. 10.1007/BF00561225Search in Google Scholar
[30] X.-B.Chen, Y.-C.Li, J.D.Plessis, P.D.Hodgson, C.Wen: Acta Biomater. 5 (2009) 1808. 10.1016/j.actbio.2009.01.015Search in Google Scholar PubMed
[31] Z.Gao, Q.Li, F.He, Y.Huang, Y.Wan: Mater. Des. 42 (2012) 13. 10.1016/j.matdes.2012.05.034Search in Google Scholar
[32] E.McCafferty: Corros. Sci. 47 (2005) 3202. 10.1016/j.corsci.2004.08.016Search in Google Scholar
[33] C.Shan, X.Hou, K.-L.Choy, P.Choquet: Surf. Coat. Technol. 202 (2008) 2147. 10.1016/j.surfcoat.2007.08.066Search in Google Scholar
[34] M.Lorenzetti, E.Pellicer, J.Sort, M.D.Baró, J.Kovač, S.Novak, S.Kobe: Materials7 (2014) 180. 10.3390/ma7010180Search in Google Scholar PubMed PubMed Central
[35] M.Morishita, M.Chikuda, Y.Ashida, M.Morinaga, N.Yukawa, H.Adachi: Mater. Trans. Jim32 (1991) 264. 10.2320/matertrans1989.32.264Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Diffusivities and atomic mobilities of an Sn–Ag–Bi–Cu–Pb melt
- Experimental study of the phase relations in the Fe–Cr–Si ternary system at 700°C
- Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys
- Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy
- Effects of copper content and liquid separation on the microstructure formation of Co–Cu immiscible alloys
- Influence of the solidification temperature range on Gasar structures made from Cu–Mn alloys
- Effect of ageing time on mechanical properties and tribological behaviour of aluminium hybrid composite
- Microstructure and tensile properties of a friction stir welded Al–Mg–Si alloy
- Lüders effect in Al 99.7% extruded via the KoBo method
- Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO2 nanoparticles – synthesis, characterization and photocatalytic activity
- Constitutive modelling of mill loads during hot rolling of AISI 321 austenitic stainless steel
- X-ray stress measurement with two-dimensional detector based on Fourier analysis
- People
- People
- People
- DGM News
- Personal
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Diffusivities and atomic mobilities of an Sn–Ag–Bi–Cu–Pb melt
- Experimental study of the phase relations in the Fe–Cr–Si ternary system at 700°C
- Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys
- Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy
- Effects of copper content and liquid separation on the microstructure formation of Co–Cu immiscible alloys
- Influence of the solidification temperature range on Gasar structures made from Cu–Mn alloys
- Effect of ageing time on mechanical properties and tribological behaviour of aluminium hybrid composite
- Microstructure and tensile properties of a friction stir welded Al–Mg–Si alloy
- Lüders effect in Al 99.7% extruded via the KoBo method
- Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO2 nanoparticles – synthesis, characterization and photocatalytic activity
- Constitutive modelling of mill loads during hot rolling of AISI 321 austenitic stainless steel
- X-ray stress measurement with two-dimensional detector based on Fourier analysis
- People
- People
- People
- DGM News
- Personal