Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO2 nanoparticles – synthesis, characterization and photocatalytic activity
-
Malgorzata Aleksandrzak
Abstract
TiO2-reduced graphene oxide nanocomposites with different diameters and crystallinity of titania nanoparticles were synthesized via the sol-gel method followed by calcination in air or treatment under vacuum. The materials were characterized with transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, photoluminescence spectroscopy and diffuse-reflectance UV–vis spectroscopy. The photocatalytic activity of the resulting materials was examined in the process of phenol decomposition under UV–vis light irradiation. The influences of TiO2 loading and calcination treatment on photocatalytic activity of the composites were investigated. It was found that higher TiO2 concentrations resulted in higher photocatalytic activity. This is in agreement with the band gap energy values, as lower visible light absorption and higher Eg values were obtained for the samples prepared with higher TiO2 loading. Furthermore, photoactivity was affected by the calcination treatment. Higher activity under UV–vis was shown by the samples calcinated under vacuum, which was attributed to the better crystallinity compared to the samples treated with air.
References
[1] E.Lee, J.-Y.Hong, H.Kang, J.Jang: J. Hazard. Mater. 219–220 (2012) 13.Search in Google Scholar
[2] A.A.Ismail, H.Bouzid: J. Colloid Interface Sci. 404 (2013) 127. 10.1016/j.jcis.2013.04.032Search in Google Scholar PubMed
[3] F.Su, J.Lu, Y.Tian, X.Ma, J.Gong: Phys. Chem. Chem. Phys. 15 (2013) 12026. 10.1039/c2cp43523cSearch in Google Scholar PubMed
[4] P.Wei, J.Liu, Z.Li: Ceram. Int. 39 (2013) 5387. 10.1016/j.ceramint.2012.06.049Search in Google Scholar
[5] W.Tu, Y.Zhou, Q.Liu, Z.Tian, X.Chen, H.Zhang, J.Liu, Z.Zou: Adv. Funct. Mater. 22 (2012) 1215. 10.1002/adfm.201102566Search in Google Scholar
[6] W.Wang, J.Yu, Q.Xiang, B.Cheng: Appl. Catal. B119–120 (2012) 109.Search in Google Scholar
[7] J.Hou, Ch.Yang, Z.Wang, S.Jiao, H.Zhu: Appl. Catal. B129 (2013) 333. 10.1016/j.apcatb.2012.09.009Search in Google Scholar
[8] L.M.AL-Harbi, E.H.El-Mossalamy: Mod. Appl. Sci. 5 (2011) 130. 10.5539/mas.v5n2p87Search in Google Scholar
[9] X.Chen, S.S.Mao: Chem. Rev. 107 (2007) 2891. 10.1021/cr0500535Search in Google Scholar PubMed
[10] W.-S.Wang, H.Du, R.-X.Wang, T.Wen, A.-WXu: Nanoscale5 (2013) 3315. 10.1039/c3nr00191aSearch in Google Scholar PubMed
[11] Y.L.Wei, K.W.Chen: J. Vac. Sci. Technol. B27 (2009) 1385. 10.1116/1.3079700Search in Google Scholar
[12] K.Gupta, R.P.Singh, A.PandeyA.Pandey: Beilstein J. Nanotechnol. 4 (2013) 345. 10.3762/bjnano.4.40Search in Google Scholar PubMed PubMed Central
[13] Y.Cong, J.Zhang, F.Chen, M.Anpo: J. Phys. Chem. C111 (2007) 6976. 10.1021/jp066362wSearch in Google Scholar
[14] T.Ohno, T.Umebayashi, M.Matsumura: Appl. Catal. A265 (2004) 115. 10.1016/j.apcata.2004.01.007Search in Google Scholar
[15] F.B.Li, X.Z.Li: Chemosphere48 (2002) 1103. 10.1016/S0045-6535(02)00201-1Search in Google Scholar
[16] M.A.Behnajady, N.Modirishahla, M.Shokri, B.Rad: Glob. NEST J. 10 (2008) 1.Search in Google Scholar
[17] M.Noorjahan, V. DurgaKumari, M.Subrahmanyam, P.Boule: Appl. Catal. B47 (2004) 209. 10.1016/j.apcatb.2003.08.004Search in Google Scholar
[18] M.Bouslama, M.C.Amamra, Z.Jia, M. BenAmar, K.Chhor, O.Brinza, M.Abderrabba, J.-L.Vignes, A.Kanaev: ACS Catal. 2 (2012) 1884. 10.1021/cs300033ySearch in Google Scholar
[19] H.-J.Kim, Y.-G.Shul, H.Han: Top. Catal. 35 (2005) 287. 10.1007/s11244-005-3836-ySearch in Google Scholar
[20] K.Woan, G.Pyrgiotakis, W.Sigmund: Adv. Mater. 21 (2009) 2233. 10.1002/adma.200802738Search in Google Scholar
[21] B.Y.Zhu, S.Murali, W.Cai, X.Li, J. WonSuk, J.R.Potts, R.S.Ruoff: Adv. Mater. 22 (2010) 3906. 10.1002/adma.200903623Search in Google Scholar PubMed
[22] N.R.Khalid, E.Ahmed, Z.Hong, Y.Zhang, M.Ullah, M.Ahmed: Ceram. Int. 39 (2013) 3569. 10.1016/j.ceramint.2012.05.090Search in Google Scholar
[23] B.Cao, S.Cao, P.Dong, J.Gao: J. Wang: Mater. Lett. 93 (2013) 349.Search in Google Scholar
[24] B.F.Machado, P.Serp: Catal. Sci. Technol. 2 (2012) 54. 10.1039/c1cy00361eSearch in Google Scholar
[25] P.V.Kamat: J. Phys. Chem. Lett. 1 (2010) 520. 10.1021/jz100002jSearch in Google Scholar
[26] K.Zhou, Y.Zhu, X.Yang, X.Jiang, C.Li: New J. Chem. 35 (2011) 353. 10.1039/c0nj00623hSearch in Google Scholar
[27] H.Kim, G.H.Moon, D.Monllor-Satoca, Y.Park, W.Choi: J. Phys. Chem. C116 (2012) 1535. 10.1021/jp2080622Search in Google Scholar
[28] G.Williams, B.Seger, P.V.Kamat: ACS Nano2 (2008) 1487. 10.1021/nn800251fSearch in Google Scholar PubMed
[29] H.Zhang, X.Lv, Y.Li, Y.Wang, J.Li: ACS Nano4 (2009) 380. 10.1021/nn901221kSearch in Google Scholar PubMed
[30] D.C.Marcano, D.V.Kosynkin, J.M.Berlin, A.Sinitskii, Z.Sun, A.Slesarev, L.B.Alemany, W.Lu, J.M.Tour: ACS Nano4 (2010) 4806. 10.1021/nn1006368Search in Google Scholar PubMed
[31] E.J.Mittemeijer, U.Welzel: Z. Kristallogr. 223 (2008) 552. 10.1524/zkri.2008.1213Search in Google Scholar
[32] E.J.Mittemeijer, U.Welzel: Diffraction Line-Profile Analysis, in Modern Diffraction Methods, Wiley-VCH, Weinheim (2012). 10.1002/9783527649884Search in Google Scholar
[33] L.L.Tan, W.J.Ong, S.P.Chai, A.R.Mohamed: Nanoscale Res. Lett. 8 (2013) 465. 10.1186/1556-276X-8-434Search in Google Scholar PubMed PubMed Central
[34] K.Sakurai, M.Mizusawa: Anal. Chem. 82 (2010) 3519. 10.1021/ac9024126Search in Google Scholar PubMed
[35] K.Thamaphat, P.Limsuwan, B.Ngotawornchai: Kasetsart J. Nat. Sci. 42 (2008) 357.Search in Google Scholar
[36] Z.Ji, G.Zhu, X.Shen, H.Zhou, C.Wu, M.Wang: New J. Chem. 36 (2012) 1774. 10.1039/c2nj40133aSearch in Google Scholar
[37] H.Zhang, J.F.Banfield: Chem. Mater. 14 (2002) 4145. 10.1021/cm020072kSearch in Google Scholar
[38] S.Bykkam, R.K.Venkateswara, Ch.S.Chakra, T.Thunugunta: Int. J. Adv. Biotechnol. Res. 4 (2013) 142.Search in Google Scholar
[39] R.J.Seresht, M.Jahanshahi, A.M.Rashidi, A.A.Ghoreyshi: Iran. J. Energy Environ. 4, Special Issue Nanotechnol. (2013) 53.Search in Google Scholar
[40] Y.Fang, R.Wang, G.Jiang, H.Jin, Y.Wang, X.Sun, S.Wang, T.Wang: Bull. Mater. Sci. 35 (2012) 495. 10.1007/s12034-012-0338-ySearch in Google Scholar
[41] S.Sakthive, H.Kisch: Angew. Chem. Int. Ed. 42 (2003) 4908. 10.1002/anie.200351577Search in Google Scholar PubMed
[42] Y.Yu, J.C.YuJ.-G.Yu, Y.-Ch.Kwok, Y.-K.Chef, J.-C.ZhaoL.Ding, W.-K.Ge, P.-K.Wong: Appl. Catal. A289 (2005) 186. 10.1016/j.apcata.2005.04.057Search in Google Scholar
[43] T.Lu, R.Zhang, Ch.Hu, F.Chen, S.Duo, Q.Hubc: Phys. Chem. Chem. Phys. 15 (2013) 12963. 10.1039/c2cp42832fSearch in Google Scholar PubMed
[44] N.Farhangi, Y.Medina-Gonzalez, R.R.Chowdhury, P.A.Charpentier: Nanotechnology23 (2012) 294005. 10.1088/0957-4484/23/29/294005Search in Google Scholar PubMed
[45] M.Wojtoniszak, B.Zielinska, X.Chen, R.J.Kalenczuk, E.Borowiak-Palen: J. Mater. Sci. 47 (2012) 3185. 10.1007/s10853-011-6153-9Search in Google Scholar
[46] B.Zielinska, E.Mijowska, R.J.Kalenczuk: Mater. Charact. 68 (2012) 71. 10.1016/j.matchar.2012.03.008Search in Google Scholar
[47] A.-K.Chakraborty, Z.Qi, S.-Y.Chai, Ch.Lee, S.-Y.Park, D.-J.Jang: Appl. Catal. B93 (2010) 368. 10.1016/j.apcatb.2009.10.010Search in Google Scholar
[48] H.Zhang, X.Lv, Y.Li, Y.Wang, J.Li: ACS Nano4 (2009) 380. 10.1021/nn901221kSearch in Google Scholar PubMed
[49] L.Gu, J.Wang, H.Cheng, Y.Zhao, L.Liu, X.Han: ACS Appl. Mater. Interfaces5 (2012) 3085. 10.1021/am303274tSearch in Google Scholar PubMed
[50] W.Geng, H.Liub, X.Yao: Phys. Chem. Chem. Phys. 15 (2013) 6025. 10.1039/c2cp43680aSearch in Google Scholar PubMed
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Diffusivities and atomic mobilities of an Sn–Ag–Bi–Cu–Pb melt
- Experimental study of the phase relations in the Fe–Cr–Si ternary system at 700°C
- Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys
- Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy
- Effects of copper content and liquid separation on the microstructure formation of Co–Cu immiscible alloys
- Influence of the solidification temperature range on Gasar structures made from Cu–Mn alloys
- Effect of ageing time on mechanical properties and tribological behaviour of aluminium hybrid composite
- Microstructure and tensile properties of a friction stir welded Al–Mg–Si alloy
- Lüders effect in Al 99.7% extruded via the KoBo method
- Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO2 nanoparticles – synthesis, characterization and photocatalytic activity
- Constitutive modelling of mill loads during hot rolling of AISI 321 austenitic stainless steel
- X-ray stress measurement with two-dimensional detector based on Fourier analysis
- People
- People
- People
- DGM News
- Personal
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Diffusivities and atomic mobilities of an Sn–Ag–Bi–Cu–Pb melt
- Experimental study of the phase relations in the Fe–Cr–Si ternary system at 700°C
- Effect of molybdenum on the microstructure, mechanical properties and corrosion behavior of Ti alloys
- Mechanism of grain refinement and coarsening in undercooled Ni–Fe alloy
- Effects of copper content and liquid separation on the microstructure formation of Co–Cu immiscible alloys
- Influence of the solidification temperature range on Gasar structures made from Cu–Mn alloys
- Effect of ageing time on mechanical properties and tribological behaviour of aluminium hybrid composite
- Microstructure and tensile properties of a friction stir welded Al–Mg–Si alloy
- Lüders effect in Al 99.7% extruded via the KoBo method
- Reduced graphene oxide nanocomposites with different diameters and crystallinity of TiO2 nanoparticles – synthesis, characterization and photocatalytic activity
- Constitutive modelling of mill loads during hot rolling of AISI 321 austenitic stainless steel
- X-ray stress measurement with two-dimensional detector based on Fourier analysis
- People
- People
- People
- DGM News
- Personal