Startseite Influence of the solidification temperature range on Gasar structures made from Cu–Mn alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of the solidification temperature range on Gasar structures made from Cu–Mn alloys

  • Xingming Zhang , Yanxiang Li , Yuan Liu und Huawei Zhang
Veröffentlicht/Copyright: 15. September 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the influence of the solidification temperature range of an alloy system on Gasar structures is investigated from the aspect of solidification mode and mushy zone length. The solidification mode and mushy zone length for various Cu–Mn alloys during unidirectional solidification are predicted by theoretical analysis. The calculated data indicate that it is reasonable, possible, but difficult to fabricate porous Cu-34.6 wt.% Mn, Cu-24 wt.% Mn, and Cu-46.6 wt.% Mn alloys by the Gasar process, respectively. Accordingly, lotus-type porous Cu-34.6 wt.% Mn alloy with regularly oriented pores was prepared and solidified with a cellular structure. Porous Cu-24 wt.% Mn alloy with directional pores could be fabricated, solidifying with a columnar dendritic structure. Porous Cu-46.6 wt.% Mn alloy with irregular large pores was obtained, and solidified with an equiaxed dendritic structure.


* Correspondence address, Prof. Yanxiang Li, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China, Tel.: +86-10-62773640, Fax: +86-10-62773640, E-mail:

References

[1] V.Shapovalov: US. Pat. 5181549 (1993).Suche in Google Scholar

[2] V.Shapovalov: Mater. Sci. Forum539–543 (2007) 1183.10.4028/www.scientific.net/MSF.539-543.1183Suche in Google Scholar

[3] V.Shapovalov, L.Boyko: Adv. Eng. Mater. 6 (2004) 407. 10.1002/adem.200405148Suche in Google Scholar

[4] H.Nakajima, T.Ikeda, S.K.Hyun: Adv. Eng. Mater. 6 (2004) 377. 10.1002/adem.200405149Suche in Google Scholar

[5] J.S.Park, S.K.Hyun, S.Suzuki, H.Nakajima: Metall. Mater. Trans. A40 (2009) 406. 10.1007/s11661-008-9710-3Suche in Google Scholar

[6] T.Ikeda, T.Aoki, H.Nakajima: Metall. Mater. Trans. A36 (2005) 77. 10.1007/s11661-005-0140-1Suche in Google Scholar

[7] Z.J.Li, Q.L.Jin, T.W.Yang, Y.H.Jiang, R.Zhou: Acta Metall. Sin. 49 (2013) 757.10.3724/SP.J.1037.2012.00723Suche in Google Scholar

[8] G.R.Jiang: PhD Thesis, Tsinghua University, Beijing (2010).Suche in Google Scholar

[9] L.V.Boiko: Mater. Sci. 36 (2000) 506. 10.1023/A:1011349702487Suche in Google Scholar

[10] G.R.Jiang, Y.X.Li, Y.Liu: Trans. Nonferr. Metal. Soc. China21 (2011) 88. 10.1016/S1003-6326(11)60682-1Suche in Google Scholar

[11] H.Hoshiyama, T.Ikeda, H.Nakajima: High Temp. Mater. Processes26 (2007) 303. 10.1515/HTMP.2007.26.4.303Suche in Google Scholar

[12] T.Ide, M.Tane. S.K.Hyun, H.Nakajima: Mater. Trans. 47 (2006) 2116. 10.2320/matertrans.47.211Suche in Google Scholar

[13] M.Sugiyama, S.K.Hyun, M.Tane, H.Nakajima: High Temp. Mater. Processes26 (2007) 297. 10.1515/HTMP.2007.26.4.297Suche in Google Scholar

[14] W.W.Mullins, R.F.Sekerka: J. Appl. Phys. 35 (1964) 444. 10.1063/1.1713333Suche in Google Scholar

[15] R.F.Sekerka: J. Appl. Phys. 36 (1965) 264. 10.1063/1.1713887Suche in Google Scholar

[16] W.Kurz, D.J.Fisher: Acta Metall. 29 (1981) 11. 10.1016/0001-6160(81)90082-1Suche in Google Scholar

[17] R.Trivedi, W.Kurz: Int. Mater. Rev. 39 (1994) 49. 10.1179/095066094790326220Suche in Google Scholar

[18] R.Trivedi, W.Kurz: Acta Metall. Mater. 42 (1994) 15. 10.1016/0956-7151(94)90044-2Suche in Google Scholar

Received: 2014-01-29
Accepted: 2014-03-19
Published Online: 2014-09-15
Published in Print: 2014-09-15

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111096/html
Button zum nach oben scrollen