Startseite Effects of copper content and liquid separation on the microstructure formation of Co–Cu immiscible alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of copper content and liquid separation on the microstructure formation of Co–Cu immiscible alloys

  • Wei Yang , Yan Long Zhang , Wen He und Zhi Feng Xu
Veröffentlicht/Copyright: 15. September 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Applying a melt-fluxing method combined with cyclical superheating, rapid solidification of undercooled Co70Cu30, Co50Cu50 and Co30Cu70 melts was performed to investigate the effects of alloy composition and immiscibility on the resultant non-equilibrium solidification microstructure. As for the samples without liquid separation, grain refinement of primary α-Co dendrite occurs clearly with increases in both copper content and initial undercooling. In contrast, the influence of alloy composition on microstructure evolution is weakened due to the occurrence of liquid separation at larger undercooling, where slight variations in the solute concentration and micro-hardness for Co-rich phase are obtained. After a quantitative thermodynamic calculation, the process of liquid separation is described, which gives an excellent explanation for the observed experimental results.


* Correspondence address, Dr. Wei Yang, National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Fenghe southroad, 696#, Nanchang, 330063, Jiangxi, P.R. China, Tel.: +86-791-86453167, Fax: +86-791-83953300, E-mail:

References

[1] K.Lu: Science328 (2010) 319. 10.1126/science.1185640Suche in Google Scholar

[2] C.P.Wang, X.J.Liu, I.Ohnuma, R.Kainuma, K.Ishida: Science297 (2002) 990. 10.1126/science.1069757Suche in Google Scholar

[3] W.Sha, X.Wu, K.G.Keong: Electroless Copper and Nickel-phosphorus Plating: Processing, Characterisation and Modelling, Woodhead Publishing Limited, Cambridge (2011). 10.1533/9780857090966Suche in Google Scholar

[4] F.Liu, G.C.Yang: Int. Mater. Rev. 51 (2006) 145. 10.1179/174328006X102484Suche in Google Scholar

[5] D.M.Herlach: Mater. Sci. Eng. R12 (1994) 177. 10.1016/0927-796X(94)90011-6Suche in Google Scholar

[6] R.Dai, S.G.Zhang, Y.B.Li, X.Guo, J.G.Li: J. Alloys Compd. 509 (2011) 2289. 10.1016/j.jallcom.2010.10.203Suche in Google Scholar

[7] N.Liu, F.Liu, G.C.Yang, Y.Z.Chen, C.L.Yang, Y.H.Zhou: J. Alloys Compd. 455 (2008) L6. 10.1016/j.jallcom.2007.01.073Suche in Google Scholar

[8] Y.P.Lu, N.Liu, T.Shi, D.W.Luo, W.P.Xu, T.J.Li: J. Alloys Compd. 490 (2010) L1. 10.1016/j.jallcom.2009.08.039Suche in Google Scholar

[9] J.J.Guo, Y.Liu, J.Jia, Y.Q.Su, J.Z.Zhao: Scripta Mater. 45 (2001) 1197. 10.1016/S1359-6462(01)01053-3Suche in Google Scholar

[10] E.Ma: Prog. Mater. Sci. 50 (2005) 413. 10.1016/j.pmatsci.2004.07.001Suche in Google Scholar

[11] Y.Nakagawa: Acta. Metall. 6 (1958) 704. 10.1016/0001-6160(58)90061-0Suche in Google Scholar

[12] S.P.Elder, A.Munitz, G.J.Abbaschian: Mater. Sci. Forum50 (1989) 137. 10.4028/www.scientific.net/MSF.50.137Suche in Google Scholar

[13] M.Palumbo, S.Curiotto, L.Battezzati: Calphad30 (2006) 171. 10.1016/j.calphad.2005.10.007Suche in Google Scholar

[14] A.Munitz, R.Abbaschian: J. Mater. Sci. 33 (1998) 3639. 10.1023/A:1004663530929Suche in Google Scholar

[15] S.Curiotto, N.H.Pryds, E.Johnson, L.Battezzati: Mater. Sci. Eng. A449 (2007) 644. 10.1016/j.msea.2006.02.375Suche in Google Scholar

[16] M.B.Robinson, D.Li, T.J.Rathz, G.Williams: J. Mater. Sci. 34 (1999) 3747. 10.1023/A:1004688313591Suche in Google Scholar

[17] C.D.Cao, D.M.Herlach, M.Kolbe: Scripta Mater. 48 (2003) 5. 10.1016/S1359-6462(02)00307-XSuche in Google Scholar

[18] Y.K.Zhang, J.Gao, D.Nagamatsu, T.Fukuda, H.Yasuda, M.Kolbe, J.C.He: Scripta Mater. 59 (2008) 1002. 10.1016/j.scriptamat.2008.02.023Suche in Google Scholar

[19] W.Yang, S.H.Chen, H.Yu, S.Li, F.Liu, G.C.Yang: Appl. Phys. A109 (2012) 665. 10.1007/s00339-012-7058-4Suche in Google Scholar

[20] J.He, H.Q.Li, B.J.Yang, J.Z.Zhao, H.F.Zhang, Z.Q.Hu: J. Alloys Compd. 489 (2010) 535. 10.1016/j.jallcom.2009.09.067Suche in Google Scholar

[21] N.Liu, G.C.Yang, W.Yang: Physica B406 (2011) 957. 10.1016/j.physb.2010.10.011Suche in Google Scholar

[22] Y.Yu. X.J.Liu, C.P.Wang, Z.P.Jiang: J. Mater. Res. 25 (2010) 1706. 10.1557/JMR.2010.0223Suche in Google Scholar

[23] H.F.Wang, F.Liu, W.Yang, Z.Chen, G.C.Yang, Y.H.Zhou: Acta. Mater. 56 (2008) 746. 10.1016/j.actamat.2007.10.021Suche in Google Scholar

[24] R.R.Dai, S.G.Zhang, X.Guo, J.G.Li: Mater. Lett. 65 (2011) 322. 10.1016/j.matlet.2010.10.021Suche in Google Scholar

[25] X.Y.Lu, C.D.Cao, M.Kolbe, B.Wei, D.M.Herlach: Mater. Sci. Eng. A375 (2004) 1101. 10.1016/j.msea.2003.10.106Suche in Google Scholar

[26] A.Karma: Int. J. Non-Equilib. Process. 11 (1998) 201.Suche in Google Scholar

[27] H.F.Wang, F.Liu, W.Yang, G.C.Yang, Y.H.Zhou: Acta Mater. 56 (2008) 2592. 10.1016/j.actamat.2008.01.025Suche in Google Scholar

[28] J.F.Li, Y.H.Zhou, G.C.Yang: Mater. Sci. Eng. A277 (2000) 161. 10.1016/S0921-5093(99)00532-8Suche in Google Scholar

[29] W.Yang, F.Liu, H.F.Wang, G.C.Yang, Y.H.Zhou: J. Alloys Compd. 470 (2009) L13. 10.1016/j.jallcom.2008.02.074Suche in Google Scholar

Received: 2013-12-22
Accepted: 2014-04-03
Published Online: 2014-09-15
Published in Print: 2014-09-15

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111095/html
Button zum nach oben scrollen