Home Effects of copper content and liquid separation on the microstructure formation of Co–Cu immiscible alloys
Article
Licensed
Unlicensed Requires Authentication

Effects of copper content and liquid separation on the microstructure formation of Co–Cu immiscible alloys

  • Wei Yang , Yan Long Zhang , Wen He and Zhi Feng Xu
Published/Copyright: September 15, 2014
Become an author with De Gruyter Brill

Abstract

Applying a melt-fluxing method combined with cyclical superheating, rapid solidification of undercooled Co70Cu30, Co50Cu50 and Co30Cu70 melts was performed to investigate the effects of alloy composition and immiscibility on the resultant non-equilibrium solidification microstructure. As for the samples without liquid separation, grain refinement of primary α-Co dendrite occurs clearly with increases in both copper content and initial undercooling. In contrast, the influence of alloy composition on microstructure evolution is weakened due to the occurrence of liquid separation at larger undercooling, where slight variations in the solute concentration and micro-hardness for Co-rich phase are obtained. After a quantitative thermodynamic calculation, the process of liquid separation is described, which gives an excellent explanation for the observed experimental results.


* Correspondence address, Dr. Wei Yang, National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Fenghe southroad, 696#, Nanchang, 330063, Jiangxi, P.R. China, Tel.: +86-791-86453167, Fax: +86-791-83953300, E-mail:

References

[1] K.Lu: Science328 (2010) 319. 10.1126/science.1185640Search in Google Scholar

[2] C.P.Wang, X.J.Liu, I.Ohnuma, R.Kainuma, K.Ishida: Science297 (2002) 990. 10.1126/science.1069757Search in Google Scholar

[3] W.Sha, X.Wu, K.G.Keong: Electroless Copper and Nickel-phosphorus Plating: Processing, Characterisation and Modelling, Woodhead Publishing Limited, Cambridge (2011). 10.1533/9780857090966Search in Google Scholar

[4] F.Liu, G.C.Yang: Int. Mater. Rev. 51 (2006) 145. 10.1179/174328006X102484Search in Google Scholar

[5] D.M.Herlach: Mater. Sci. Eng. R12 (1994) 177. 10.1016/0927-796X(94)90011-6Search in Google Scholar

[6] R.Dai, S.G.Zhang, Y.B.Li, X.Guo, J.G.Li: J. Alloys Compd. 509 (2011) 2289. 10.1016/j.jallcom.2010.10.203Search in Google Scholar

[7] N.Liu, F.Liu, G.C.Yang, Y.Z.Chen, C.L.Yang, Y.H.Zhou: J. Alloys Compd. 455 (2008) L6. 10.1016/j.jallcom.2007.01.073Search in Google Scholar

[8] Y.P.Lu, N.Liu, T.Shi, D.W.Luo, W.P.Xu, T.J.Li: J. Alloys Compd. 490 (2010) L1. 10.1016/j.jallcom.2009.08.039Search in Google Scholar

[9] J.J.Guo, Y.Liu, J.Jia, Y.Q.Su, J.Z.Zhao: Scripta Mater. 45 (2001) 1197. 10.1016/S1359-6462(01)01053-3Search in Google Scholar

[10] E.Ma: Prog. Mater. Sci. 50 (2005) 413. 10.1016/j.pmatsci.2004.07.001Search in Google Scholar

[11] Y.Nakagawa: Acta. Metall. 6 (1958) 704. 10.1016/0001-6160(58)90061-0Search in Google Scholar

[12] S.P.Elder, A.Munitz, G.J.Abbaschian: Mater. Sci. Forum50 (1989) 137. 10.4028/www.scientific.net/MSF.50.137Search in Google Scholar

[13] M.Palumbo, S.Curiotto, L.Battezzati: Calphad30 (2006) 171. 10.1016/j.calphad.2005.10.007Search in Google Scholar

[14] A.Munitz, R.Abbaschian: J. Mater. Sci. 33 (1998) 3639. 10.1023/A:1004663530929Search in Google Scholar

[15] S.Curiotto, N.H.Pryds, E.Johnson, L.Battezzati: Mater. Sci. Eng. A449 (2007) 644. 10.1016/j.msea.2006.02.375Search in Google Scholar

[16] M.B.Robinson, D.Li, T.J.Rathz, G.Williams: J. Mater. Sci. 34 (1999) 3747. 10.1023/A:1004688313591Search in Google Scholar

[17] C.D.Cao, D.M.Herlach, M.Kolbe: Scripta Mater. 48 (2003) 5. 10.1016/S1359-6462(02)00307-XSearch in Google Scholar

[18] Y.K.Zhang, J.Gao, D.Nagamatsu, T.Fukuda, H.Yasuda, M.Kolbe, J.C.He: Scripta Mater. 59 (2008) 1002. 10.1016/j.scriptamat.2008.02.023Search in Google Scholar

[19] W.Yang, S.H.Chen, H.Yu, S.Li, F.Liu, G.C.Yang: Appl. Phys. A109 (2012) 665. 10.1007/s00339-012-7058-4Search in Google Scholar

[20] J.He, H.Q.Li, B.J.Yang, J.Z.Zhao, H.F.Zhang, Z.Q.Hu: J. Alloys Compd. 489 (2010) 535. 10.1016/j.jallcom.2009.09.067Search in Google Scholar

[21] N.Liu, G.C.Yang, W.Yang: Physica B406 (2011) 957. 10.1016/j.physb.2010.10.011Search in Google Scholar

[22] Y.Yu. X.J.Liu, C.P.Wang, Z.P.Jiang: J. Mater. Res. 25 (2010) 1706. 10.1557/JMR.2010.0223Search in Google Scholar

[23] H.F.Wang, F.Liu, W.Yang, Z.Chen, G.C.Yang, Y.H.Zhou: Acta. Mater. 56 (2008) 746. 10.1016/j.actamat.2007.10.021Search in Google Scholar

[24] R.R.Dai, S.G.Zhang, X.Guo, J.G.Li: Mater. Lett. 65 (2011) 322. 10.1016/j.matlet.2010.10.021Search in Google Scholar

[25] X.Y.Lu, C.D.Cao, M.Kolbe, B.Wei, D.M.Herlach: Mater. Sci. Eng. A375 (2004) 1101. 10.1016/j.msea.2003.10.106Search in Google Scholar

[26] A.Karma: Int. J. Non-Equilib. Process. 11 (1998) 201.Search in Google Scholar

[27] H.F.Wang, F.Liu, W.Yang, G.C.Yang, Y.H.Zhou: Acta Mater. 56 (2008) 2592. 10.1016/j.actamat.2008.01.025Search in Google Scholar

[28] J.F.Li, Y.H.Zhou, G.C.Yang: Mater. Sci. Eng. A277 (2000) 161. 10.1016/S0921-5093(99)00532-8Search in Google Scholar

[29] W.Yang, F.Liu, H.F.Wang, G.C.Yang, Y.H.Zhou: J. Alloys Compd. 470 (2009) L13. 10.1016/j.jallcom.2008.02.074Search in Google Scholar

Received: 2013-12-22
Accepted: 2014-04-03
Published Online: 2014-09-15
Published in Print: 2014-09-15

© 2014, Carl Hanser Verlag, München

Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111095/html
Scroll to top button