Startseite Naturwissenschaften Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2

  • Yulia Krupskaya , Markus Schäpers , Anja U.B. Wolter , Hans-Joachim Grafe , Evgeniya Vavilova , Angela Möller , Bernd Büchner und Vladislav Kataev EMAIL logo
Veröffentlicht/Copyright: 24. September 2016

Abstract

BaAg2Cu[VO4]2 contains Cu(II) S=1/2 ions on a distorted two-dimensional triangular lattice interconnected via non-magnetic [VO4] entities. DFT band structure calculations, quantum Monte-Carlo simulations, and high-field magnetization measurements show that the magnetism of this compound is determined by a superposition of ferromagnetic (FM) and antiferromagnetic (AFM) uniform spin-1/2 chains with nearest neighbor exchange couplings of JFM=−19 K and JAFM=9.5 K (A. Tsirlin, A. Möller, B. Lorenz, Y. Skourski, H. Rosner, Phys. Rev. B 85 (2012) 014401). Here we report the study of BaAg2Cu[VO4]2 by high-field/frequency electron spin resonance (HF-ESR) and nuclear magnetic resonance (NMR) spectroscopies, which probe the local magnetic properties. In the HF-ESR measurements, we observe an anisotropic ESR spectrum typical for the Cu(II) ions and determine the g-tensor, g||=2.38 and g=2.06. Moreover, we see a substantial change in the spectral shape of the ESR lines at low temperatures indicating the presence of short range magnetic correlations. The analysis of the low-temperature ESR spectra shows that its peculiar structure is due to the development of the anisotropic internal fields corresponding to FM and AFM correlations in the respective Cu spin chains. In the NMR spectra the signals from 51V nuclei in the two types of chains were identified. The analysis of the temperature evolution of these signals strongly supports the ESR findings on the occurrence of two types of Cu chains. Altogether, the HF-ESR and NMR results confirm theoretical predictions of the superposition of FM and AFM Cu(II) spin-1/2 chains in the studied material.


Dedicated to: Kev Salikhov on the occasion of his 80th birthday.


Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft through Grants No. KA1694/8-1, WO 1532/3-2 and partially supported by the Russian Foundation for Basic Research through project RFBR 14-02-01194.

References

1. D. Baeriswyl, L. Degiorgi (Eds.), Strong Interactions in Low Dimensions. Kluwer Academic Publishers, Dordrecht (2004).10.1007/978-1-4020-3463-3Suche in Google Scholar

2. N. E. Amuneke, D. E. Gheorghe, B. Lorenz, A. Möller, Inorg. Chem. 50 (2011) 2207.10.1021/ic1018554Suche in Google Scholar

3. A. Tsirlin, A. Möller, B. Lorenz, Y. Skourski, H. Rosner, Phys. Rev. B 85 (2012) 014401.10.1103/PhysRevB.85.014401Suche in Google Scholar

4. C. Golze, A. Alfonsov, R. Klingeler, B. Büchner, V. Kataev, C. Mennerich, H.-H. Klauss, M. Goiran, J.-M. Broto, H. Rakoto, S. Demeshko, G. Leibeling, F. Meyer, Phys. Rev. B 73 (2006) 224403.10.1103/PhysRevB.73.224403Suche in Google Scholar

5. S. Stoll, A. Schweiger, J. Magn. Reson. 178 (2006) 42.10.1016/j.jmr.2005.08.013Suche in Google Scholar

6. P. W. Anderson, P. R. Weiss, Rev. Mod. Phys. 25 (1953) 269.10.1103/RevModPhys.25.269Suche in Google Scholar

7. R. J. Ford, M. A. Hitchman, Inorg. Chim. Acta 33 (1979) L167.10.1016/S0020-1693(00)89436-0Suche in Google Scholar

8. M. D. Mermin, H. Wagner, Phys. Rev. Letters 17 (1966) 1133.10.1103/PhysRevLett.17.1133Suche in Google Scholar

9. J. P. H. Benner, B. H. Boucher, in “Magnetic Properties of Layered Transition Metal Compounds” (Ed. L. I. Jongh) Kluwer Academic Publishers, Dordrecht (1990), P. 323.10.1007/978-94-009-1860-3_7Suche in Google Scholar

10. C. J. Peters, R. J. Birgeneau, M. A. Kastner, H. Yoshizawa, Y. Endoh, J. Tranquada, G. Shirane, Y. Hidaka, M. Oda, M. Suzuki, and T. Murakami, Phys. Rev. B 37 (1988) 9761.10.1103/PhysRevB.37.9761Suche in Google Scholar PubMed

11. E. A. Turov, Physical Properties of Magnetically Ordered Crystals, Academic Press, New York (1965).Suche in Google Scholar

12. K. Nagata, Y. Tazuke, J. Phys. Soc. Jpn. 32 (1972) 337.10.1143/JPSJ.32.337Suche in Google Scholar

13. T. Karasudani, H. Okamoto, J. Phys. Soc. Jpn. 43 (1977) 1131.10.1143/JPSJ.43.1131Suche in Google Scholar

14. E. Vavilova, A. S. Moskvin, Y. C. Arango, A. Sotnikov, S.-L. Drechsler, R. Klingeler, O. Volkova, A. Vasiliev, V. Kataev, B. Büchner, EPL 88 (2009) 27001.10.1209/0295-5075/88/27001Suche in Google Scholar

15. M. Schäpers, H. Rosner, S.-L. Drechsler, S. Süllow, R. Vogel, B. Büchner, A. U. B. Wolter, Phys. Rev. B 90 (2014) 224417.10.1103/PhysRevB.90.224417Suche in Google Scholar

16. R. E. Wasylishen, S. E. Ashbrook, S. Wimperis. NMR of Quadrupolar Nuclei in Solid Materials. Willey, West Sussex (2012).Suche in Google Scholar

17. A. Klümper, Eur. Phys. J B 5 (1998) 677.10.1007/s100510050491Suche in Google Scholar

18. R. Feyerherm, S. Abens, D. Günther, T. Ishida, M. Meißner, M. Meschke, T. Nogami, M. Steiner, J. Phys. Cond. Mat. 12 (2000) 8495.10.1088/0953-8984/12/39/312Suche in Google Scholar

Received: 2016-6-15
Accepted: 2016-8-23
Published Online: 2016-9-24
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2016-0829/html
Button zum nach oben scrollen