Abstract
Magnetic nanoparticles (MNPs) of spinel type iron oxide (of approximately 4 nm) mineralized inside the internal cavity of a mini ferritin-type protein have been investigated by means of electron magnetic resonance (EMR) spectroscopy. EMR measurements have been recorded at different temperatures in perpendicular and parallel configurations. The spectra have been interpreted using an approach based on the giant spin model. We confirm the quantum behavior of the MNPs, moreover, the thermal evolution of the spin system in terms of population of excited spin states is showed.
Dedicated to: Professor Dr. Kev Salikhov in occasion of his 80th birthday for his outstanding contribution in the field of magnetic resonance.
Acknowledgements
Dr. Silvia Sottini is acknowledged for her help during the EMR measurements.
References
1. M. Fittipaldi, L. Sorace, A.-L. Barra, C. Sangregorio, Phys. Chem. Chem. Phys. 11 (2009) 6553.10.1039/b913085nSearch in Google Scholar
2. W. Wernsdorfer, Adv. Chem. Phys. 118 (2001) 99.10.1016/S0026-0576(01)80705-4Search in Google Scholar
3. A.-H. Lu, E. L. Salabas, F. Schüth, Angew. Chemie Int. Ed. 46 (2007) 1222.10.1002/anie.200602866Search in Google Scholar
4. A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bönnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer and F. Schüth, Angew. Chemie – Int. Ed. 43 (2004) 4303.10.1002/anie.200454222Search in Google Scholar
5. T. Hyeon, Chem. Commun. 271 (2003) 927.10.1039/b207789bSearch in Google Scholar
6. T. Shinjo (Ed.), Nanomagnetism and Spintronics, Elsevier, Amsterdam, The Netherlands (2009).Search in Google Scholar
7. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R. N. Muller, Chem. Rev. 108 (2008) 2064.10.1021/cr068445eSearch in Google Scholar
8. W. Andrä, H. Nowak (Ed.), Magnetism in Medicine: A Handbook, Wiley – VCH, Weinheim, Germany (2007).10.1002/9783527610174Search in Google Scholar
9. S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M. Setogawa, Y. Kurihara, J. Magn. Magn. Mater. 65 (1987) 245.10.1016/0304-8853(87)90043-6Search in Google Scholar
10. A. K. Gupta, M. Gupta, Biomaterials 26 (2005) 3995.10.1016/j.biomaterials.2004.10.012Search in Google Scholar PubMed
11. Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, J. Phys. D. Appl. Phys. 36 (2003) R167.10.1088/0022-3727/36/13/201Search in Google Scholar
12. D. W. Elliott, W. Zhang, Environ. Sci. Technol. 35 (2001) 4922.10.1021/es0108584Search in Google Scholar PubMed
13. M. Takafuji, S. Ide, H. Ihara, Z. Xu, Chem. Mater. 16 (2004) 1977.10.1021/cm030334ySearch in Google Scholar
14. E. Fantechi, C. Innocenti, M. Zanardelli, M. Fittipaldi, E. Falvo, M. Carbo, V. Shullani, L. Cesare Mannelli, C. Ghelardini, A. M. Ferretti, A. Ponti, C. Sangregorio, P. Ceci, ACS Nano 8 (2014) 4705.10.1021/nn500454nSearch in Google Scholar PubMed
15. D. Gatteschi, M. Fittipaldi, C. Sangregorio, L. Sorace, Angew. Chemie Int. Ed. 51 (2012) 4792.10.1002/anie.201105428Search in Google Scholar PubMed
16. M. Fittipaldi, C. Innocenti, P. Ceci, C. Sangregorio, L. Castelli, L. Sorace, D. Gatteschi, Phys. Rev. B Condens. Matter Mater. Phys. 83 (2011) 104409.10.1103/PhysRevB.83.104409Search in Google Scholar
17. P. Ceci, E. Chiancone, O. Kasyutich, G. Bellapadrona, L. Castelli, M. Fittipaldi, D. Gatteschi, C. Innocenti, C. Sangregorio, Chem. – A Eur. J. 16 (2010) 709.10.1002/chem.200901138Search in Google Scholar PubMed
18. N. Noginova, T. Weaver, E. P. Giannelis, A. B. Bourlinos, V. A. Atsarkin, V. V. Demidov, Phys. Rev. B – Condens. Matter Mater. Phys. 77 (2008) 1.10.1103/PhysRevB.77.014403Search in Google Scholar
19. M. Fittipaldi, R. Mercatelli, S. Sottini, P. Ceci, E. Falvo, D. Gatteschi, Phys. Chem. Chem. Phys. 18 (2016) 3591.10.1039/C5CP07018JSearch in Google Scholar PubMed
20. A.-L. Barra, L.-C. Brunel, D. Gatteschi, L. Pardi, R. Sessoli, Acc. Chem. Res. 31 (1998) 460.10.1021/ar960157pSearch in Google Scholar
21. D. Gatteschi, A. L. Barra, A. Caneschi, A. Cornia, R. Sessoli, L. Sorace, Coord. Chem. Rev. 250 (2006) 1514.10.1016/j.ccr.2006.02.006Search in Google Scholar
22. E. J. L. McInnes, Spectroscopy of Single-molecule Magnets, Springer, Berlin, Germany (2006).10.1007/430_034Search in Google Scholar
23. R. S. Edwards, S. Maccagnano, E. C. Yang, S. Hill, W. Wernsdorfer, D. Hendrickson, G. Christou, J. Appl. Phys. 93 (2003) 7807.10.1063/1.1540050Search in Google Scholar
24. S. Hill, S. Maccagnano, K. Park, R. M. Achey, J. M. North, N. S. Dalal, Phys. Rev. B 65 (2002) 224410.10.1103/PhysRevB.65.224410Search in Google Scholar
25. O. Kasyutich, A. Ilari, A. Fiorillo, D. Tatchev, A. Hoell, P. Ceci, J. Am. Chem. Soc. 132 (2010) 3621.10.1021/ja910918bSearch in Google Scholar PubMed
26. S. Stoll, A. Schweiger, J. Magn. Reson. 178 (2006) 42.10.1016/j.jmr.2005.08.013Search in Google Scholar PubMed
27. F. Moro, R. De Miguel, M. Jenkins, C. Gómez-Moreno, D. Sells, F. Tuna, E. J. L. McInnes, A. Lostao, F. Luis, J. Van Slageren, J. Magn. Magn. Mater. 361 (2014) 188.10.1016/j.jmmm.2014.02.053Search in Google Scholar
28. L. Castelli, M. Fittipaldi, A. K. Powell, D. Gatteschi, L. Sorace, Dalton Trans. 40 (2011) 8145.10.1039/c1dt10311cSearch in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Basic and Combination Cross-Features in X- and Q-band HYSCORE of the 15N Labeled Bacteriochlorophyll a Cation Radical
- An EPR Study of Small Magnetic Nanoparticles
- Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
- Triarylmethyl Radicals: An EPR Study of 13C Hyperfine Coupling Constants
- Natural Abundance Nitrogen-15 NMR in Thermotropic Liquid Crystals With Cyano-Group
- Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
- THz ESR study of Spinel Compound GeCo2O4
- Self-Association of Glycyrrhizic Acid. NMR Study
- A Site-Specific Study of the Magnetic Field-Dependent Proton Spin Relaxation of an Iridium N-Heterocyclic Carbene Complex
- Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals
- Electron Paramagnetic Resonance and DFT Analysis of the Effects of Bulky Perfluoroalkyl Substituents on a Vanadyl Perfluoro Phthalocyanine
- Coordination of the Mn4+-Center in Layered Li[Co0.98Mn0.02]O2 Cathode Materials for Lithium-Ion Batteries
- Triarylmethyl Radical: EPR Signal to Noise at Frequencies between 250 MHz and 1.5 GHz and Dependence of Relaxation on Radical and Salt Concentration and on Frequency
Articles in the same Issue
- Frontmatter
- Preface
- Basic and Combination Cross-Features in X- and Q-band HYSCORE of the 15N Labeled Bacteriochlorophyll a Cation Radical
- An EPR Study of Small Magnetic Nanoparticles
- Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
- Triarylmethyl Radicals: An EPR Study of 13C Hyperfine Coupling Constants
- Natural Abundance Nitrogen-15 NMR in Thermotropic Liquid Crystals With Cyano-Group
- Surface Hydroxyl OH Defects of η-Al2O3 and χ-Al2O3 by Solid State NMR, XRD, and DFT Calculations
- THz ESR study of Spinel Compound GeCo2O4
- Self-Association of Glycyrrhizic Acid. NMR Study
- A Site-Specific Study of the Magnetic Field-Dependent Proton Spin Relaxation of an Iridium N-Heterocyclic Carbene Complex
- Multifrequency Multiresonance EPR Investigation of Halogen-bonded Complexes Involving Neutral Nitroxide Radicals
- Electron Paramagnetic Resonance and DFT Analysis of the Effects of Bulky Perfluoroalkyl Substituents on a Vanadyl Perfluoro Phthalocyanine
- Coordination of the Mn4+-Center in Layered Li[Co0.98Mn0.02]O2 Cathode Materials for Lithium-Ion Batteries
- Triarylmethyl Radical: EPR Signal to Noise at Frequencies between 250 MHz and 1.5 GHz and Dependence of Relaxation on Radical and Salt Concentration and on Frequency