Home Physical Sciences Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2
Article
Licensed
Unlicensed Requires Authentication

Magnetic Resonance Study of the Spin-1/2 Quantum Magnet BaAg2Cu[VO4]2

  • Yulia Krupskaya , Markus Schäpers , Anja U.B. Wolter , Hans-Joachim Grafe , Evgeniya Vavilova , Angela Möller , Bernd Büchner and Vladislav Kataev EMAIL logo
Published/Copyright: September 24, 2016

Abstract

BaAg2Cu[VO4]2 contains Cu(II) S=1/2 ions on a distorted two-dimensional triangular lattice interconnected via non-magnetic [VO4] entities. DFT band structure calculations, quantum Monte-Carlo simulations, and high-field magnetization measurements show that the magnetism of this compound is determined by a superposition of ferromagnetic (FM) and antiferromagnetic (AFM) uniform spin-1/2 chains with nearest neighbor exchange couplings of JFM=−19 K and JAFM=9.5 K (A. Tsirlin, A. Möller, B. Lorenz, Y. Skourski, H. Rosner, Phys. Rev. B 85 (2012) 014401). Here we report the study of BaAg2Cu[VO4]2 by high-field/frequency electron spin resonance (HF-ESR) and nuclear magnetic resonance (NMR) spectroscopies, which probe the local magnetic properties. In the HF-ESR measurements, we observe an anisotropic ESR spectrum typical for the Cu(II) ions and determine the g-tensor, g||=2.38 and g=2.06. Moreover, we see a substantial change in the spectral shape of the ESR lines at low temperatures indicating the presence of short range magnetic correlations. The analysis of the low-temperature ESR spectra shows that its peculiar structure is due to the development of the anisotropic internal fields corresponding to FM and AFM correlations in the respective Cu spin chains. In the NMR spectra the signals from 51V nuclei in the two types of chains were identified. The analysis of the temperature evolution of these signals strongly supports the ESR findings on the occurrence of two types of Cu chains. Altogether, the HF-ESR and NMR results confirm theoretical predictions of the superposition of FM and AFM Cu(II) spin-1/2 chains in the studied material.


Dedicated to: Kev Salikhov on the occasion of his 80th birthday.


Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft through Grants No. KA1694/8-1, WO 1532/3-2 and partially supported by the Russian Foundation for Basic Research through project RFBR 14-02-01194.

References

1. D. Baeriswyl, L. Degiorgi (Eds.), Strong Interactions in Low Dimensions. Kluwer Academic Publishers, Dordrecht (2004).10.1007/978-1-4020-3463-3Search in Google Scholar

2. N. E. Amuneke, D. E. Gheorghe, B. Lorenz, A. Möller, Inorg. Chem. 50 (2011) 2207.10.1021/ic1018554Search in Google Scholar

3. A. Tsirlin, A. Möller, B. Lorenz, Y. Skourski, H. Rosner, Phys. Rev. B 85 (2012) 014401.10.1103/PhysRevB.85.014401Search in Google Scholar

4. C. Golze, A. Alfonsov, R. Klingeler, B. Büchner, V. Kataev, C. Mennerich, H.-H. Klauss, M. Goiran, J.-M. Broto, H. Rakoto, S. Demeshko, G. Leibeling, F. Meyer, Phys. Rev. B 73 (2006) 224403.10.1103/PhysRevB.73.224403Search in Google Scholar

5. S. Stoll, A. Schweiger, J. Magn. Reson. 178 (2006) 42.10.1016/j.jmr.2005.08.013Search in Google Scholar

6. P. W. Anderson, P. R. Weiss, Rev. Mod. Phys. 25 (1953) 269.10.1103/RevModPhys.25.269Search in Google Scholar

7. R. J. Ford, M. A. Hitchman, Inorg. Chim. Acta 33 (1979) L167.10.1016/S0020-1693(00)89436-0Search in Google Scholar

8. M. D. Mermin, H. Wagner, Phys. Rev. Letters 17 (1966) 1133.10.1103/PhysRevLett.17.1133Search in Google Scholar

9. J. P. H. Benner, B. H. Boucher, in “Magnetic Properties of Layered Transition Metal Compounds” (Ed. L. I. Jongh) Kluwer Academic Publishers, Dordrecht (1990), P. 323.10.1007/978-94-009-1860-3_7Search in Google Scholar

10. C. J. Peters, R. J. Birgeneau, M. A. Kastner, H. Yoshizawa, Y. Endoh, J. Tranquada, G. Shirane, Y. Hidaka, M. Oda, M. Suzuki, and T. Murakami, Phys. Rev. B 37 (1988) 9761.10.1103/PhysRevB.37.9761Search in Google Scholar PubMed

11. E. A. Turov, Physical Properties of Magnetically Ordered Crystals, Academic Press, New York (1965).Search in Google Scholar

12. K. Nagata, Y. Tazuke, J. Phys. Soc. Jpn. 32 (1972) 337.10.1143/JPSJ.32.337Search in Google Scholar

13. T. Karasudani, H. Okamoto, J. Phys. Soc. Jpn. 43 (1977) 1131.10.1143/JPSJ.43.1131Search in Google Scholar

14. E. Vavilova, A. S. Moskvin, Y. C. Arango, A. Sotnikov, S.-L. Drechsler, R. Klingeler, O. Volkova, A. Vasiliev, V. Kataev, B. Büchner, EPL 88 (2009) 27001.10.1209/0295-5075/88/27001Search in Google Scholar

15. M. Schäpers, H. Rosner, S.-L. Drechsler, S. Süllow, R. Vogel, B. Büchner, A. U. B. Wolter, Phys. Rev. B 90 (2014) 224417.10.1103/PhysRevB.90.224417Search in Google Scholar

16. R. E. Wasylishen, S. E. Ashbrook, S. Wimperis. NMR of Quadrupolar Nuclei in Solid Materials. Willey, West Sussex (2012).Search in Google Scholar

17. A. Klümper, Eur. Phys. J B 5 (1998) 677.10.1007/s100510050491Search in Google Scholar

18. R. Feyerherm, S. Abens, D. Günther, T. Ishida, M. Meißner, M. Meschke, T. Nogami, M. Steiner, J. Phys. Cond. Mat. 12 (2000) 8495.10.1088/0953-8984/12/39/312Search in Google Scholar

Received: 2016-6-15
Accepted: 2016-8-23
Published Online: 2016-9-24
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2016-0829/html
Scroll to top button